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ABSTRACT

Different aspects of dynamics of freezing in a supercooled liquid are discussed with
emphasis on recent theoretical developments. A unified description of the dynamics which
pays proper attention to the local structure of the liquid is presented. The theory 1s a
natural generalization of the recently developed order parameter theory of freezing and 1s
based on a hydrodynamic description appropriate for the dynamics of lhquid-solid

transitions.

1. INTRODUCTION

F REEZING of a simple, one-component system 1s
a first-order phase transition which is usually
accompanied by a sizable change 1n volume and
entropy. There are several features that are
distinctive of this transition. First, it does not end
in a critical point. Secondly, a pure hquid may be
supercooled to a large degree without the appear-
ance of the solid phase. This imphes the existence
of a large metastable region in the configuration
space. Crystalline solid, on the other hand, can
hardly be superheated. The asymmetry between
freezing and melting is also manifested in the
dynamics of these two transitions'*?.

Dynamics of a first-order phase transition is
usually divided into two parts. The first stage 1s
the formation of a nucleus of critical size of the
new phase. This is an activated process and can be
quite slow for liquid — solid transitions. The
activation energy of the critical nucleus can be
expressed®+* in terms of the bulk properties of the
two phases and in terms of the surface energy of
the nucleus. The prefactor of the exponential
term is not presently well understood.

The second stage of freezing is the growth of
the critical nucleus to macroscopic dimensions.
Excepting a transient period in the initial stage of
growth, the second stage can be modelied as the
growth of a large (on microscopic scale) crystal-
lite into the supercooled melt. This process can be
quite rapid and is usually controlled by the

thermodynamic driving torce (proportional to
the degree of supercooling) and by the ability of
the system to transport the latent heat of freezing
away from the interface°.

In this article we report some of the recent
developments in the theory of the dynamics of
freezing. We shall not review older work for
which excellent reviews exist in the literature®’.
The main emphasis of this article 1s on under-
standing the dynamics of freezing from a micro-
scopic basis and we shall mainly consider those
theories that are molecular in nature.

Recent upsurge of interest in the theory of
dynamics of freezing is partly motivated by the
success of the order-parameter theory of freez-
ing®1? to describe the equilibrium phase trans-
ition at least semi-quantitatively. In freezing/mel-
ting transitions the appropriate order parameters
are the Fourier components of the density distri-
bution evaluated at the reciprocal lattice vectors
(RLV) of the solid. These order parameters are
zero in the liquid and have non-zero constant
values in the solid phase. These order-parameters
can be related to the Debye-Waller factors® of the
solid. The order parameter theory has been
applied successfully to study freezing transition
in various model systems® '° and in hquid
sodium®. Recently this order-parameter theory
(also known as the density functional theory
(DFT)), has been applied to understand the
stability of icosahedral crystals'’.

In order to generalize the equilibrium theory



692

Current Science, August 5, 1986, Vol. 55, No. 15

of freezing to treat dynamics, we need to consider
time-and, or space-dependent order parameters.
There have been several attempts'? ' in the past
in this direction, but these studies were not based
on correct description of the statics. In this article
we shall present a description of dynamics that is
consistent with the static description of freezing.

The organization of the rest of this article is as
follows, In §2, we discuss recent developments in
the theory of nucleation. Section 3 contains a
theoretical analysis of hquid nstability and dy-
namics of freezing. In §4 we consider dynamics at
the solid-hquid interface. Section 5 contains a
brief discussion on crystal growth. Section 6
concludes with a discusston on the experimental

aspect of dynamics of freezing.

2. NUCLEATION

Homogeneous nucleation can be defined'* as the
instability of the pure supercooled liquid against
a fimte amplitude, localized fluctuation that leads
to the decay of the metastable liquid phase. Thus
nucleation i1s an activated process. For low super-
coolings the amplitude of the fluctuation necess-
ary for decay of the metastable liquid may be
quite large and the nucleating process involves
passage over a large activation barrier. The
nucleation process can, therefore, be slow and
rate determining in the dynamics of freezing,

The conventional approach'® towards nucle-
ation employs the “capillanty approximation”
which gives the excess free energy of a crystalhte
of radius R as sum of separate contributions from
bulk and surface energies

AG(R) = ; nR> AG, +4nR%cy,,
where AG, is the bulk free energy difference per
unit volume between the solid and the liquid and
o, is the surface free energy of a planar solid-
liquid interface. One obtains an expression for
the critical Gibbs free energy by maximizing
AG(R) with respect to R to obtain

AG* = 16ma3, /3(AG ).

0 B

Next, one uses Eyring’s'® expression for the rate

of barrier crossing to obtain an expression for the
nucleation rate.

The above phenomenological approach suffers
from several drawbacks. First, the separation of
AG into (AG),,, and (AG),,; may not be justified
for a small nucleus. Secondly, a good estimate of
6 1s seldom available.

Recently Harrowell and Oxtoby'® presented
an interesting first principles theory of crystal
nucleation from a supercooled melt. This theory
was formulated by combining the order-
parameter theory of freezing of Ramakrishnan
and Yussouff® (R-Y) with a square gradient
approximation'’ for the nonlocal dependence of
free energy on density. Here we shall sketch the
important steps. Firstly, the free energy as-
sociated with a coarse-grained local number
density p(r) is given by

F{p}; = j.dr p(r)[ln pr) 1]

KgT Pi
—%th Jdrz c(ry — l':z)
Lo(r)—p] Lp(ea—p1) ], (1)

where k ,1s Boltzmann constant, 7'1s the tempera-
ture, p; 1s the density of the uniform liquid and
c(r) 1s the two-particle direct pair correlation
function. The Fourter transform of the direct
correlation function is related to the structure
factor S(q) through the relation

1
1 —c(g)

c(q) = p J-dfc(i')exp(—iq- r).

(2)
By minimizing (1) with respect to p(r), we get

p(t)/py=cexp [drc(r—r) [p(r)—p] (3)

where ¢’ 1s a normalization constant. Equation (3)
plays a central role in the theory. The second step
involves the expansion of the inhomogeneous
density in terms of position dependent order
parameters’®

S(q) =

p(r) = p[1+ do(D)+ ) P (r)exp(iG 1), (4)
(G}

where the sum is over all the reciprocal lattice
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vectors (RLV) of the solid. ¢ and ¢, are the
order parameters that are zero in the pure liquid
and have nonzero constant values i1n the pure
solid. For a nucleus of spherical shape, ¢, and ¢
depend on the radial distance only. The last
assumption ignores microscopic faceting, as dis-
cussed by Harrowell and Oxtoby*®. The last step
involves extremization of the grand canonical
free energy AW with respect to the order para-
meters. The expression for AW is given by'®

AW = — Idf[P(f) — )+ %jdﬁ Idfz c(r; —r;)
[o(r)—pdLplr)+p]. (3)

Harrowell and Oxtoby'® obtained the order
parameter profiles ¢, (r) and ¢(r) and the free
energy surfaces for several supercoolings by
considering only a single set of RLV for the bcc-
sodium system. They used the experimentally
known values of S(k) and S{o) above the freezing
temperatures to extrapolate them below the
freezing temperature. The main conclusions of
this work are summarized below. First, the
interface between crystal nucleus and liquid 18
broad, of the order of 6-7 atomic diameters thick.
This is consistent with the square gradient ap-
proximation. The interfacial width appears to be
independent of supercooling. Secondly, the frac-
tional density change, ¢,, falls off faster with
distance from the centre than ¢,. Thirdly, as the
supercooling AT increases, the value of ¢, re-
mains essentially constant at ¢, (solid) at the
centre (r = 0) of the nucleus while ¢¢ (r = 0)
decreases. The last result is surprising because for
most substances ¢, increases as temperature 1s
decreased which can be understood from the
strong temperature dependence of the pressure
along the coexistence line in the P-T plane. It 1s
difficult to understand the reason for the anomal-
ous behaviour of ¢, because of the many ap-
proximations that are involved in this theory.
By taking an observable rate of 1 nucleus/sec
and using Turbull Fisher’s formula®, an estimate
of the maximum supercooling can be obtained.
Harrowell and Oxtoby found 1t to be lying
between 127 and 150°C for the bcc-sodium
system, which is reasonable. Subsequently, Grant
and Guuton'? used the order parameter theory

to obtain an expression of the Zeldovich factor'*
for the nucleation rate of a crystalline solid from
its melt. Thetr expression’® for rate of nucleation
is yet to be tested against experiments.

The order-parameter theory of solid-hquid
nucleation constitutes an important advance-
ment over the previous phenomenological
theories. In the next section, we shall consider the
dynamical aspects of nucleation.

3. DYNAMICS OF FREEZING AND LIQUID
INSTABILITY

There have been several studies, both experimen-
tal'®- 2% and theoretical ' - !> to locate the limit of
stability of a supercooled liquid. The criteria of
the stability limit is that at this limit the hquid
becomes unstable with respect to infinitesimal
fluctuations. Thus, the search for a stability limit
has been essentially a search for the classical
spinodal point. It has been suggested'? that the
stability limit is achieved when the value of the
liquid structure factor, S(k; ), at the first peak (ko ),
becomes infinitely large. Given that the liquud 1s a
homogeneous spatially random system, 1t Is
doubtful if the structure factor at all diverges at
any finite temperature. In this section we shall
present a theoretical study of the stabibty limit
which suggests that a spinodal point (in the
classical sense) does not exist for solid-liquid
transitions. However, a stability limit with some
of the characteristics of a spinodal point can be
identified.

Our analysis starts with the following
Ginzburg— Landau expression'* for the time
dependence of the density field n(r, )

on

E‘f(l‘,f}=-—V.J, (6)
where the flux J is given by
F
J = —pnrgvofilnenl o
| on(r, 1)

The coarse-grained free energy functional F 1s
assumed to be given by (1) with p(r) replaced by
n(r,t)and D is the self-diffusion coethicient of the
liquid. Equation (1), (6) and (7) can be combined
to obtain the following non-linear diftusion



694

Current Science, August S, 1986, Vol. 55, No. I5

equation

%(r, t) = DV.[Vn(r,t)—nfF], (8)

where the force-field F is given by

BF(r,t)y =V |drcr—r)[(n(r,)~p]. (9

Our stability analysis takes the following form.
We study the stabtlity of the system with respect
to a density wave of the following form

n(r,t) = p(1+ ¢o(t))+p ) Pc(t)exp (iG,r).
() (10)

As 1n (4), the sum 1s over all the reciprocal lattice
vectors. Use of (10) in (8) gives the following
expressions for time dependence of ¢,(t) and

. \t)
deo/dt = 0 (11)
do_(1)/dt = —G*Dg(1) [1 — (1 + ¢o) c(G)]

+D Y ¢¢bc-¢c(G-G)[G.(G-G)],
(G}
(12)

where
c(G) = pifdr c(r) exp(—iG.r) (13)

Thus, ¢, has no time dependence and we shall
denote the initial value by ¢. At this juncture we
must point out that it would be a mistake to set
¢o equal to zero as done in all the previous
studies!?'!? on the dynamics of freezing, The
time dependence of ¢ (¢ ) is, however, nontrivial
and involves couplings between different RLV’s.
As a result, iquid fluctuations at different wave
vectors are also coupled. As we show below, this
coupling plays an important role in the dynamics
of freezing. Also note the ¢, dependence in (12).

Next we perform a Laplace transform on (12)
and write the resulting expression in the follow-
ing form

b
s+ G2D(G)—1(G)

where ¢. = ¢, (t =0) and the effective self-

¢ (5) =

(14)

diffusion is given by

B(G) =~

with
S(G) =[1—pi(1+¢o)c(G)] ™. (16)

I(G) 1s an operator which acts on any function
(G, s) to give

[(G)f(G;5)=D Y [G(G—-G)]c(G-G)
<

1
W e

2 ) dsf (G, sV (G-G,s—5), (17)

where the Bromwich path has to be so chosen
that Re s > Re s'. Equation (14) can be used to
evaluate ¢.(s) perturbatively with G° = [s
4+ D G*]7! as the Green’s function. A stability
limit shall be reached when the relaxation time of
¢ (s) becomes infinitely large.

We have carried out the perturbative analysis
and the details will be published elsewhere?°.
Here we summarize the main conclusions of this
analysis.

(1) There is no spinodal point in the classical
sense. There is, however, an instability point with
¢.'s infinitesimally small but ¢, finite. This can
happen because S (k) can diverge even though

‘S (ko) remains finite. This can happen when the

following relation is satisfied:

1 —p(14+¢0) C1Gl = k) =0

and
¢'G = 0!

In an analysis of the order-parameter diagram of
the equilibrium freezing transition, Bagchi et al’
earlier suggested that this point is the spinodal
point in the freezing transition. They found that
(18) 1s satisfied at p;, = 1.20 and ¢, = 0.15 for
hard spheres. Note that p, is very close to the
random close packing density of hard spheres.
Here we find a justification of the conjectures of
Bagchi et al® from dynamical consideration.

(i) For bcc-sodium system, an one order

for all ¢.'s. (18)
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parameter

(Gl = 21,0, £ D 0+ 1,4 1% (21,
d

+ 1,0)3’5)

a

theory with perturbation up to first order in I (G),
(second order in ¢(G)) gives the following con-
dition for the stability limit?°

$(Gy) = [¢(G)S(G))] ™, (19)

which gives a value of ¢(G,) = 0.5 at the freezing
point. This is in fair agreement with the value®

$(G;) = 0.63 from the equilibrium theory of
freezing. However, this agreement is deceptive. If

we Include the next order parameter (G;
== (+ 2,00), (0, + 2,0), (00 + 2}) then a substan-
tially different picture emerges. We then find a
large supercooling and finite density change (¢,
> () is necessary for freezing to occur. This is
because ¢{G;) is large and negative (a typical
value 15 ¢(G,) = —04 at 100°C) and resists
freezing. Higher order parameters are less 1m-
portant for bee systems but are important for fcc
systems.

(ii1). This study suggests that the reason for large
supercooling necessary for freezing to occur 1s
the existence of the deep negative region in the
structure factor which is probed by an important
RLYV of the solid

2
((i 2, + 2-..0)2—;, 0,2,+2)=, (+£2,0,

a
2
+ 2)—-:)

for fcc lattice. As supercooling is increased, both
¢(G,) and {c(G,)| increases (that is S(G;) de-
creases) and finally a point is reached where
fluctuations at G, = k, cease to decay leading to
the formation of the solid.

4. DYNAMICS AT THE SOLID-LIQUID
INTERFACE

A quantitative understanding of the dynamical
processes at the solid-liquid interface 1s crucial
for many branches of condensed matter physics®.

However, our understanding of this field 1s still
largely incomplete. The reason is that it 1s difficult
to carry out experimental study of this intertace
which 1s very narrow, on a macroscopic scale, and
is bounded by two condensed phase which have
similar short range order. Also, it is difficult to
treat this interface theoretically because it is a
strongly inhomogeneous system. Here we shall
briefly summarize the theoretical developments
in this held.

Recently Klupsch®' presented a theoretical
analysis of the elementary kinetic processes at the
interface. He used a Smoluchowski equation
description to investigate the time necessary for a
particle to undergo transition from the hiquid to
the coexisting solid phase. An order-parameter
description was used for the interface with a
mean-field expression for the localizing potential
which arises from the inhomogeneity at the
interface. For the fcc Lennard-Jones system,
Klupsch obtained a value of 107'° sec for the
solid-liquid transition time. No experimental
confirmation of this result 1s yet available.

An important transport property at the inter-
face is the self-diffusion coefficient, D. D is of the
order of 10~ ° cm?/sec in liquid and it is almost
zero in the solid phase. Since the solid-liquid
interface is quite narrow, the self-diffusion coef-
ficient must change sharply across the interface.
Recently Bagchi?? presented a theoretical study
of the variation of the self-diffusion coefficient
across a solid-liquid interface by using an order
parameter description of the interface and a
nonlinear integral equation similar to (8) but with
the force term time-independent. The self-
diffusion coefficient is obtained perturbatively
and the final expressions are??: %

8 2
D(Zo) = Do[l “"j(CG ¢G)2 - S(CG ¢G)4 . -}
for fcc lattice, (20)

and

D(Zo) = Do[1 = 4(c 9 — Sl 00" - . ]
for bee lattice, (21)

where D, is the liquid-phase self-diffusion coef-
ficient and Z, is a coarse-grained distance which
specifies a position in the interface. ¢ (£,) gives
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the interface profile of the topological order. This
1s zero in the pure liquid phase and has nonzero
constant value tn the solid phase. As we traverse
from liquid to solid. ¢ .(Z,) increases and D (Z)
decreases and eventually goes to zero. It is
interesting to find the values of the order para-
meters for the two lattices at which D(Z,) equals
zero. We find*" ¢ _(bcc) = 0.67 and ¢ (fcc) = 0.9
which 1s 1n good agreement with the values
obtained from the theory of freezing® !°.

A quantity of experimental interest is the
dynamic structure factor, S{k, w), at the sold-
liquid interface. This quantity can be studied by
inelastic neutron scattering, although extracting
information about the interface may prove dit-
ficult. The dynamic structure factor 1s defined by
the following expression**

S(k,w) = jdrexp(—ik.r)jA dtexp (iwt)

{3n(0Q,0)dn(r,1) ), (22)

where onlr, t) i1s the fluctuation in number den-
sity and { ) denotes an average over an equilib-
rium distribution. Recently Bagchi®’ presented a
calculation of S{k,w) at the interface for large
values of the wave vector k. An analytic expres-
sion was derived which show the evolution of the
elastic peak (w = 0) as the sohd surface 1s ap-
proached from the hquid side.

There also exist several model-dependent
studies of the interface dynamics®. We shall not
review these studies except to mention that these
studies are mainly applicable to the solid-vapour
interface and may not be applicable to solid-
liquid interface where short-range order of liquid
plays an important role.

5. KINETICS OF CRYSTAL GROWTH

The dynamics of crystal growth 1s a vast
subject and we shall not attempt to review any of
the standard theories which can be obtained
elsewhere’” 2. Here we shall briefly discuss a
theoretical approach recently initiated by
Kirkpatrick and the author?’. This theory is
based on an order-parameter description of the

interface and pays proper attention to the local
structure present in the liquid and in the solid-
liquid interface. The dynamics ts based on a
nonlinear diffusion equation that contains a
mean-field force term due to the local structure

and a temperature gradient term to account {or
the temperature difference between the sohd and

the melt. The temperature gradient provides the
driving force for the growth of the crystal. The

nonlinear diffuston equation 1s of the following
form?’

on .
o (r,t) = V.D(r).[Vh—nBF]
—VDnVinf(r,r), (23)

where fi{r, t) = [k T(r,t)] "', T(r,t)1s the space
and time dependent temperature. The justifi-
cation of using a nonlinear diffusion equation to
describe dynamics of crystal growth has been
discussed elsewhere*’. Here we briefly mention
the salient points. Firstly, (23) has correct limiting
properties. At equilibrium, solution of (23) 1s the
standard mean-field expression {for the inhomo-
geneous density distribution that has been used
successfully in the equilibrium theory of freez-
ing®. In a homogeneous system, in the absence of
a temperature gradient, (23) leads to an expres-
sion of the dynamic structure factor S (k, w) which
can describe neutron scattering by dense classical

liquids fairly well for large values of the wave

vector k. Secondly, the recent work of de
Schepper and Cohen?®, and also of
Kirkpatrick??, on short wavelength collective
modes show that the dynamics at large wave
numbers are dominated by a self-diffusion hke
mode alone. This i1s because at large wave num-
bers momentum relaxation is very rapid and only
the density conservation is relevant. Thirdly, the
mean free path in a liquid at freezing density 1s
extremely small, only 3-59% of molecular
diameter.

The next step is the expansion of the number
density n(r, t) in suitable order parameters

H(l’, I) = PIU + ¢'0(r1 [ ))+ P Z d’G(r:t)
exp(iG.r). (24)



Current Science, August 3, 1986, Vol. 33, No. 15

697

Note that the order parameters are now both
time- and space-dependent. Substitution of (24)
in (23) leads to a system of equations for ¢, ()
and ¢_(t) These equations involve time-
dependent temperature field which 1s described
by a thermal diffusion equation. The resulting
expresstons are rather complicated and we re-
frain from presenting them here; they are
available elsewhere?’. By assuming a steady-state
temperature distribution in the interface and by
making some simphfying assumptions, one can
obtain the following simple expression for the
velocity, V, of crystal growth

L[ 1 ¢
- = T
7 jz, dZD(Z)z=5 T(2), (25)

where Z 15 the width of the interface, and Z; and
Z. denote positions where the order parameters
reach their liquid-like and sohid-like values, re-
spectively. If we further assume a linear depen-
dence of T(Z) on Z, we recover the usual® linear
dependence of V' on AT—the temperature dif-
ference between the crystal and the melt.

The preceding analysis of crystal growth 1s
valid only for steady, slow growth of the crystal-
line front. A different approach is needed to
describe the dynamics during a rapid growth of
the crystal. Recent dynamic light scattering ex-
periments': 2 3° at the interface of a growing
crystal have uncovered an interesting nonequilib-
rium phenomenon—a dramatic narrowing of the
linewidth of the Rayleigh peak when the velocity
of growth exceeds certain critical value. The
physical reason for this dramatic slow down of
the relaxation rate is not well understood at
present.

Lastly we comment that a molecular theory for
the kinetics of crystal growth is far from complete
at present. This field provides an interesting
challenge to the experimentalists and the theor-

eticians alike.

6. DISCUSSION

A major obstacle to our understanding of the
dynamical processes involved in freezing 1s the

unavailability of precise experimental data
against which theoretical predictions can be
tested. This is reflected in many apparently
contradictory results reported in literature'? >*.
Recent computer simulation experiments on nuc-
leation32: 33, on interfacial structure’* >~ and on
crystal growth3® have provided significant new
insight into the different aspects of the dynamics
of freezing. There is, however, a difficuity mn
obtaining precise results even in computer stmu-
lations because molecular dynamics simulations
in supercooled liquids involve very long runs.
With the rapid development in computer science,
these difficulties may soon be eliminated. We
expect interesting new results from computer
experiments in near future.

There are several important theoretical prob-
lems that need to be explored. First, we need a
many order parameter theory of nucleation. It 1s
evident from the results of §2 that even for bcc
lattice systems, we need at least two order
parameters to obtain a reliable description of
dynamics. Secondly, no theoretical study 1s yet
available for fcc systems, although many com-
puter simulation results are available for these
systems. Thirdly, we need a more precise under-
standing of the stability of supercooled liquids to
density waves of the form given by (10). An
interesting problem here would be to study
density waves of icosahedral symmetry''.
Dynamics at the solid-liquid interface 1s another
problem that is little understood at present,
especially at an advancing crystalline front. We
have already mentioned the problems that are
unsolved in the dynamics of crystal growth. Thus,
dynamics of freezing remains an exciting field of
research where interesting developments can be
expected in near future.
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