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ABSTRACT

The path of a spin-} particles in classical limit has been obtained via the WKB approximation of

the energy-momentum tensor of the Dirac hield.

INTRODUCTION

N general theory of relativity there are three usual

methods for the determination of the equation of
motion of a free particle (classical). (1) the geodesic of
the space-time geometry, (i1) the conservation law and
(ii1) the vanational principle. The method (1) is based
on infinitesimal version of the law of inertia which 1s
valid in a local Minkowskian space-time and the
equality of the inertial and gravitational masses of a
particle’. The method (ii) is based on the conservation
law for dust fluid? and the method (iii) is based on the

variation of the action integral

- fmds, (1)

where m is the gravitational mass of the particle and ds
is the metric of the space-time’. The action function
mds is derived from the energy of the particle.

The significance of the motion of an elementary
particle has been realized recently in neutron inter-
ferometer experiment®. Because of the fundamental
difference between elementary particles and classical
particles, the motion of an elementary particle cannot
be derived either of the methods (i), (i1) and (su1). It is
still a problem how to derive the motion of an

elementary particle,
Recently, Audretsch derived the path of a spin-4

particle in classical limit via the WKk B approximation of

the Dirac field equation®. According to this procedure
it has been shown that in the classical limit the path of a
spin-4 particle follows the geodesic of the space-time
geometry.

In this note we propose another method for the
determination of the path of a spin-{ particle in
classical limit via the wKB approximation of the
energy-momentum tensor of the Dirac held.

From the conservation law of the energy-
momentum tensor for a dust fluid it has been shown

that the path of a dust particle follows the geodesic of

the space-time geometry?. Also, in this procedure we

are able to determine the conservation of the momen-
tum density of the dust fluid. Therefore, from the
classical limit of the conservation law for the energy-
momentum tensor of the Dirac field not only the
determination of the path of spin-4 particles in the
classical limit but also, the conservation of the momen-
tum density of the Dirac field in the classical himit 1s
possible to determine.

The Lagrangian density for the Dirac field 1s given
by

. |
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where — g is the determinant of the metric tensorg,,,, A
the Plank constant, ¢ and  the four spinor and its
conjugate, m the mass of the spin-3 particle. y* is
defined as

Yyt 4Ty = 29" (3)

The covariant derivative of the spinor is defined as

ll’fﬂ — t'bj.u + rnw‘!'ﬁj,u = lpjp _&rp'ﬁ (4)

where the symbol ‘j° denotes the partial derivative. I',
are the Fock-lvanenko coefficients. These are uniquely
determined up to an additive multiple of unit matrix

from the relation®

Vaiv =Vuy —Yelw)! ~Tove+0L, =0 ()
{2} are Christoffel symbols formed from the metric
tensor g,,. By varying the Lagrangian density (2) with
respect to ¢ and ¢ separately, we get

ihy*,, —my =0, (6)
and
ihip, v +my = 0. (7)
The probability current J* i1s defined as
JH =ty (8)
which ts divergence free
Ji, =0 9)
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by virtue of (6) and (7). According to the Gordon

decomposition of the probability current’, we get
Jh=JE 4+ T4, (10)
where
Je = 'J}"“W vy, (11)
and
Ju h ’; MV
.'H' 2-—._ g l)b)_;v
h L ¥
=ﬂ($jvﬂ'“ 'ﬁ'*"ﬁap !pjv)! (12)
2077 = i{(y"y" —y"¥"). (13)
Both currents J% and J4, are divergence free
J:Iu = 0'-' M;p = 0, (14)

The energy-momentum tensor for the Dirac field s
defined as®

Jn,\/—gég"“dﬂ=5deQ, (15)

where dQ is the infinitesimal four volume. Following
Pauli®, we have

Iy = 37,09%, (16)
where
Y =ebv', e ep9,, = Nap (17)

e* are the orthotetrads, y* the standard Pauli matrices,
and n,, the Minkowskian metric tensor. The variation
of y* when combined with the variation of (15), we get

or —(gw{ )~ Gea0{ W })0™ (18)

The variations {16) and (18) are used to evaluate the
variation of the Lagrangian density in (15) as foliows

h .
[ =araa=4 [ -itors,
— iyl + iy, 07"y +ian¢7w]\/ ~ g df)

R[] . , ,
=§’[ (—'“ﬁ}'{u!rbjp}-'-“ﬂj{u?v}'\b)ég#

+!' (gpvj,u _gPﬂJU) (gudg{ﬂp} _gvﬂa{:ﬂ}):l

/—gdQ, (19)

where the symbols {uv) denote the symmetrization in
the indices u and v. The variations 8{¢, } are expressed

in the forms of dg*” and their derivatives. The
derivatives are further simplified by partial integ-
rations and we see that the second part of the integrand
vanishes. Therefore, we have

JTuv‘ / —gog*dd

h . .
- EI[ "' “ﬁ}’n%m +"2;j{n?v}¢’:| og*" N b dQ.
(20)

Furthermore, the infintesimal coordinate trans-

formation
xH = x#+ pH, (21)

where y* are arbitrary small quantities, when consid-
ered in (15), we get®

§[LdQ = —[T¢, v /~—gdQ. (22
Equating J | LdQ to zero, we get

Ts. =0, (23)

v

because of the arbitrariness of y*,

Let us consider the Wk B expansions® of ¢ and ¢ as

-

U = exp(is/h) ¥ (—ihYa,

=0

J = exp(~is/h) 3. (hya,  (4ab)

n={

Substituting the values of ¢ and  from (24a,b) into
(8), (11), (12) and (20) and neglecting the terms which

are multiples of k and higher powers of h, we get

JE = &0‘}?‘"{10, (25)
s

JE¢ = ——aya,, (26)
m

4 =0, (27)

and

]
T = 5[ — Ay s’ — gy ags’"]. (28)

In view of (25), (26) and (27), (8) implies

5
- Aoy, (29)
m

agy*ag =

This equation simplifies (28) as

Ay Gy

THY = st (30)

m

Substituting the value of ¥ from (24a) into (6) and
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neglecting the terms which are multiples of h and
higher power of k, we get

(P¥spe+ m)ay, = 0. (31)

For a non-trivial solution of (31) we have the

Hamilton-Jacobi equation
$4su = m?. 32)

Therefore, the four-momentum p* and the four-
velocity u* for the particle are defined as’

mu* = p¥ = —s'¥ {33)

Substituting the value of s'* from this equation into
(30), we get

THY = (magagy)u’u’, (34)

which shows that in the classical limit the energy-
momentum tensor for the spin-3 particles behaves like
a dust fluid with density p, given by

Po = Mayag, (35)

and hence, in the classical limit the spin-3 particle
follows the geodesic of the space-time geometry”

ut u’ =0, (36)
and the momentum density
pnu‘”’ E— mﬁﬂﬂo u#& (37)

is conserved. In a separate communication we shall
discuss the significance of the conservation of the

momentum density in the classical himat.
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ANNOUNCEMENT

XIX ANNUAL CONFERENCE INDIAN PHARMACOLOGICAL SOCIETY

This Conference will be held during October 24 --26,
1986 at the Department of Clinical Pharmacology,
Sher-i-Kashmir Institute of Medical Sciences,
Srinagar.

The last date for the registration and the receipt of
abstracts are 30th June and 31ist July, respectively.

For details please contact; Dr Shamsuddin Bisat,
Orgamsing Sccretary, Department  of  Clinical
Pharmacology, Sher--Kashmar Institute of Medical
Sciences, Soura, Snmagar, P Box 27, Kashnur
190011, India.



