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STANDARD x-ray diffraction patterns for polycrystal-
line materials are reported by the National Bureau of
Standards, Washington, US A from time to time 1n two
classifications: (1) The experimental x-ray powder
diffraction patterns obtained using diffractometers
and (u) the caiculated x-ray powder diffraction pat-
terns, computed from published crystal structure data.
The motivation for the calculated patterns has been
stated to be due to some substances of interest not
being readily available for experimental work. In such
cases their calculated patterns will be useful. Although
the calculated patterns are reported for several crystal-
line materials, the present note concerns only those
patterns of solid solutions or mixed systems in view of
their lack of precision due to the negligence of a few
factors which are important. One such set of calculated
patterns on nine series of sohd solutions 1s reported by
Mc Murdie et al'. The motivation of the present note is
to point out certain important factors neglected in the
above reported data so that the disagreement between
the calculated and actual experimental patterns of the
crystalline solid solutions, could be minimized.

In forming a solid solution of element A with
element B, two kinds of atoms with different sizes
come in contact on a common crystalline lattice. The
inclusion of the new substitutional atoms in the crystal
causes new centres of disturbances affecting the exist-
ing electronic force fields between atoms, both short
range and long range, and the resulting effects will be
of several kinds?. On the atomic scale, both the solvent
and solute atoms are shifted from the mean atomic
positions in the lattice and thus suffer a permanent
static displacement. The static distortion factor arising
due to the size effect may be evaluated experimentally
from (i) measurement of x-ray diffuse scattering’ and
(ii) measurement of quasi-temperature reduction of
Bragg reflections®"”.

Considering only the Bragg scattering case, relevant
for the present consideration of disordered binary
substitutional solid solutions, the size differences of the

atomic species participating in the crystaline solid
solutions cause static displacement for the atoms from
their ideal sites. This acts like ‘frozen heat motion’
when the x-ray diffraction consequence is visualized
and introduces a new attenuation factor exp (—2M’)
for the intensity of the Bragg peaks, over and above the
normal Debye-Waller factor®. In disordered binary
alloy of fcc structures the size effect factor 1s ap-
proximately given by the relationship®:

2M’' = 2B’ sin*@/4*

= 48—V} - VP sin?0/ A% M

Where x is the atomic fraction of constituent A4, ¥, is
its atomic volume in pure element form and V 4 is the
average atomic volume in the alloy. Further, for a
disordered system obeying Vegard’s law for both cell
parameters and volumes, it can be shown that the size
effect distortion factor may be expressed as:

B = 24(x)(1 —x)(a,~ap:. = (2

The close agreement of this model with the experimen-
tal results in Bragg neutron diffraction studies for the
crystaltine solid solution KBr,Cl; . . has been recently
confirmed by Mohanlal et al’. The experimental
values” 2 of the size effect distortion factor B! are in
the range of 0.34 A? to 0.59 A? for different com-
positions of the solid solution KBr,Cl, _,.

The size effect distortion factors, discussed above,
have been completely neglected in the calculated x-ray
diffraction powder patterns reported by Mc Murdie
et al'. These factors are appreciable when compared
with the normal Debye-Waller factors of the crystal.
For an intermediate composition of solid solution, the
B’ values could be about 25 %, of the normal Debye-
Waller factor. It is therefore necessary to consider the
distortion factor B’ arising due to the size effect of the
jons or atoms in any mixed system and may be
calculated using a suitable model. The Bragg in-
tensities of various reflections have to be corrected
appropriately taking these B’ factors as additional
attenuating factors apart from the usual corrections
for the normal Debye-Waller factors of the crystal,
when precision of the calculated patterns is motivated.
For solid solutions of cubic systems, even an isotropic
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Table 1 Comparison of typical Debye-Waller factors used in the calculated patterns of solid

solutions with reported experimental values

10-12

Debye-Waller factors (B) in A?

Calculated
patterns Reported
fon n for solid values for
crystal solutions pure crystals Reference
K* 1.6 K*{in KCI} 1.929 10
Na™ (in KBr-NaBr) 1.6 K™ (in KBr) 2.550 11
Na ™ (in KCI-NaCl) 19 Na*(in NaCl) 1.639 12
Br~ 1.6 Br™ (in KBr) 2.200 11
Cl- 1.6 Cl™(in KC(Cl) 1.994 10
Cl™(in Na(Cl) 1.326 12

Debye-Waller factor B and size effect factor B’ would
be adequate for the calculated patterns to obtain more
realistic patterns. Further, it must be pointed out that
most of the Debye-Waller factors used in the calcu-
lations of Mc Murdie ez al' are found to be smaller
when compared to the reported values '~ 12 even for
the end member crystals without size effect consider-
ations. Table 1 indicates typical values of calculated
patterns' with the values of end member pure crystals
reported in the literature’® ™' 2. In this context, it may
be pointed out that the size effect considerations would
further increase the deviations appreciably.

Other aspects which have to be considered in the
calculated patterns are: {i) deviations from Vegard's
law and (ii) miscibility gaps in the solhid solution
systems. The first factor is important in view of its
dependence on the calculated d spacings and since d
spacings as well as intensity values are the two main
tabulations for the calculated patterns. Deviations
from Vegard’s law are well known for several systems
and have been discussed’®. The miscibility gaps in
several solid solutions are also known; for example, the
miscibility gaps in the systems KBr-K1 and NaCl-K(Cl
have been reported’* and therefore, realistic calculated
patterns for such systems have to be appropriately
prepared. As it is impossible to follow a general
approach of considering both these aspects, it may be
necessary to look for such data reported in the
literature on specific meterial of interest so that a more
exact calculated powder pattern for that material could
be developed.

It is a pleasure to thank Prof. K. S. Chandrasekaran
for many valuable discussions and encouragement.
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