SEMI-THEORETICAL METHOD OF DETERMINING LIFE-TIMES

V. G. TULASIGERI and V. M. KORWAR

Department of Physics, Karnataka University, Dharward 580003, India.

ABSTRACT

A semi-theoretical method to determine life-times of vibrational levels of diatomic molecules based on absolute electronic transition moments, has been applied to levels $\nu' = 0, 1, 2, 3$ and 4 of NO ($A^2\Sigma^+ - X^2\Pi_{1/2}$) system. The method yields better results for higher vibrational level ($\nu' = 4$).

INTRODUCTION

Life-times ($\tau_{\nu'}$) of vibrational levels of diatomic molecules are usually determined experimentally. But as pointed out by Smith et al.1 although life-times have been measured by several experimental techniques, the values obtained are found to be different. However, $\tau_{\nu'}$'s are extremely important in the determination of important parameters of diatomic molecules such as oscillator strengths ($f_{\nu'\nu''}$), absolute electronic transition moments ($R_{\nu'\nu''}$) etc. Under these circumstances, an alternative way of determining $\tau_{\nu'}$'s would be extremely useful. In the present work, an attempt is made at a semi-theoretical evaluation of $\tau_{\nu'}$'s using the expressions for the absolute $R_{\nu'}$'s. A comparison between such values and experimentally measured values is also made for NO ($A^2\Sigma^+ - X^2\Pi_{1/2}$) system as a typical diatomic molecule.

PROCEDURE TO EVALUATE $\tau_{\nu'}$'S

The details of evaluation of $\tau_{\nu'}$'s are given below. The oscillator strength2 of a band is given by the following two relations.

$$f_{\nu'\nu''} = \left(\frac{mc}{8\pi^2\varepsilon^2} \right) \left(\frac{1}{\nu_{\nu'}} \right) \left(\frac{G}{G''} \right)^{\nu_{\nu'} \cdot \nu_{\nu''}} \frac{R^2_{\nu'\nu''}}{\Sigma v_{\nu''}}$$ \hspace{1cm} (1)

and

$$f_{\nu'\nu''} = \left(8mc\xi^2/\hbar e^2 \right) G^2 v_{\nu''} \cdot R^2_{\nu'\nu''} q_{\nu'\nu''}.$$ \hspace{1cm} (2)

where G and G'' are the degeneracy factors of the upper and lower states respectively and all other parameters have the usual meaning.

In (1), R's are relative R's which were obtained3 for the same system of the same molecule using the intensity data of Mohlmann et al.4 In the evaluation of these relative R's, two methods were involved viz the method of regression5 and the method of Turner et al.6 In the present investigation, using these relative R's3 the oscillator strengths were obtained for each band by using (1). These strengths in turn were substituted in (2), the absolute R's were computed for each band and such computed absolute R's were fitted to get linear and quadratic relations3 applicable for the band system. Using these relations3 in the following (3), one could find $\tau_{\nu'}$'s for any ν'-level

$$\frac{1}{\tau_{\nu'}} = \sum_{\nu''} A_{\nu'\nu''} = \sum_{\nu''} kd_{\nu'\nu''}^3 q_{\nu'\nu''} R^2_{\nu'\nu''} (\tau_{\nu'\nu''})$$ \hspace{1cm} (3)

which might not be available from any experimental work. In (3) d is the degeneracy of the lower state and k is taken to be equal to $2.106.149.957 \times 10^{-6}$.

This is the method to compute semi-theoretical $\tau_{\nu'}$ values. However, in the present work, we use this method only to compare experimental $\tau_{\nu'}$'s with the computed $\tau_{\nu'}$'s to test the efficacy of the present method proposed. Such computed $\tau_{\nu'}$'s have been presented in table 1.

RESULTS AND DISCUSSION

In order to evaluate $\tau_{\nu'}$'s for the levels $\nu' = 0, 1, 2, 3$ and 4 we have used Franck-Condon ($q_{\nu'\nu''}$) factors and r-centroids ($r_{\nu'\nu''}$) of Spindler et al.7 and the available wavelengths for $\nu' = 0, 1$ and 2 from the work of Mohlmann et al.8 whereas for levels $\nu' = 3$ and 4, we had to calculate the wavelengths by using the method as given by Herzberg8. Such evaluated $\tau_{\nu'}$'s have been recorded in table 1 for levels $\nu' = 0, 1, 2, 3$ and 4. The experimental $\tau_{\nu'}$'s are also given for comparison. The molecular constants required in the present work are taken from Huber et al.9.

During determination of the $\tau_{\nu'}$'s, we have used two sets of relative $R(r)$ equations3 obtained by the method of regression5 and by the method due to Turner et al.6 and the experimental $\tau_{\nu'}$'s from Mohlmann et al.4 and Smith et al.11. The experimental $\tau_{\nu'}$ value of Hikida et al.10 is also given in table 1. This is to compare the theoretical performance of $\tau_{\nu'}$ by the present semi-theoretical method. On the basis of a
Table 1 Comparison of theoretically evaluated life-times (τ_{ν}) with experimental ones.

<table>
<thead>
<tr>
<th>ν</th>
<th>Mohlmann</th>
<th>Smith</th>
<th>Hikida</th>
<th>R_e with Mohlmann τ_{ν}'s</th>
<th>Method of regression</th>
<th>Method of Turner-Nicholls</th>
<th>R_e with Smith τ_{ν}'s</th>
<th>Method of regression</th>
<th>Method of Turner-Nicholls</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>200</td>
<td>187</td>
<td>—</td>
<td>176</td>
<td>189</td>
<td>166</td>
<td>178</td>
<td>166</td>
<td>161</td>
</tr>
<tr>
<td>1</td>
<td>195</td>
<td>187</td>
<td>—</td>
<td>168</td>
<td>170</td>
<td>159</td>
<td>161</td>
<td>159</td>
<td>159</td>
</tr>
<tr>
<td>2</td>
<td>190</td>
<td>177</td>
<td>—</td>
<td>178</td>
<td>169</td>
<td>168</td>
<td>159</td>
<td>159</td>
<td>159</td>
</tr>
<tr>
<td>3</td>
<td>—</td>
<td>165</td>
<td>—</td>
<td>153</td>
<td>127</td>
<td>145</td>
<td>120</td>
<td>120</td>
<td>120</td>
</tr>
<tr>
<td>4</td>
<td>—</td>
<td>—</td>
<td>118</td>
<td>151</td>
<td>112</td>
<td>142</td>
<td>105</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(τ_{ν} values are to be multiplied by 10^{-9} s)

A favourable comparison between theoretically evaluated transition probabilities and the integrated intensity measures, the quadratic expressions were found suitable. Therefore, in the present work, only quadratic absolute R_e expressions have been employed.

Looking at table 1, one could say that for $\nu' = 0, 1$ and 4 there is close agreement between theoretically evaluated τ_{ν}'s using the method of Turner et al (of finding absolute R_e's) and experimentally measured τ_{ν} values of Smith et al and Hikida et al ($\nu' = 4$). Similarly for $\nu' = 2$ and 3, using the method of regression (of finding absolute R_e's), there is a good agreement between theoretically computed τ_{ν}'s and the experimental τ_{ν}'s of Smith et al. Under these circumstances, we cannot compare the performance of the two methods mentioned above. However, if one considers the variation of τ_{ν}'s with vibrational levels, it is noticed that only under the method of Turner et al, the theoretically evaluated τ_{ν} decrease in magnitude as ν' increases. This is understandable on the basis of the Boltzmann factor exp ($-E/KT$). This decreasing order also agrees with the variation of experimental values. Thus, we could infer that the method of Turner et al has an advantage over the other method.

In the above comparison we have used τ_{ν} values given in table 1 which involve Mohlmann's experimental τ_{ν} values in the evaluation of absolute R_e's. Strangely, the theoretically predicted τ_{ν} values and the experimental ones of Smith et al agree for $\nu' = 0, 1, 2$ and 3. For $\nu' = 4$ there is good agreement between theoretical τ_{ν} value and the experimental τ_{ν} value of Hikida et al this is as it should be.

In general, it can be said that the experimental values of τ_{ν} that we have chosen agree fairly well between themselves. τ_{ν} values computed by the present semi-theoretical method are in close agreement with the experimentally observed values.

In conclusion, as experimental determination of τ_{ν}'s is not an easy task especially for higher vibrational levels and the semi-theoretical method proposed here has shown better performance at $\nu' = 4$, it may be surmised that such computations are of great value.

25 June 1985; Revised 21 October 1985