Table 1 Reaction rates as functions of temperatures 50\% helium, 50\% carbon, $\rho_s = 1$

<table>
<thead>
<tr>
<th>T_s</th>
<th>Γ</th>
<th>τ</th>
<th>$3\Gamma/\tau$</th>
<th>$\log (r_{5e})$</th>
<th>$\log (r_{14}^{\bullet})$</th>
<th>$\log (r_{18}^{\bullet})$</th>
<th>$\log (r_{22}^{\bullet})$</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0</td>
<td>19.082</td>
<td>328.5</td>
<td>0.1743</td>
<td>6.615</td>
<td>17.212</td>
<td>10.598</td>
<td>15.65822</td>
</tr>
<tr>
<td>1.4</td>
<td>13.63</td>
<td>293.65</td>
<td>0.1393</td>
<td>11.645</td>
<td>19.027</td>
<td>7.382</td>
<td>18.12641</td>
</tr>
<tr>
<td>1.8</td>
<td>10.601</td>
<td>270.05</td>
<td>0.1178</td>
<td>14.352</td>
<td>20.107</td>
<td>5.754</td>
<td>19.33908</td>
</tr>
<tr>
<td>2</td>
<td>9.541</td>
<td>260.731</td>
<td>0.1098</td>
<td>15.277</td>
<td>20.455</td>
<td>5.18</td>
<td>19.81989</td>
</tr>
</tbody>
</table>

$r_{5e} =$ unscreened reaction rate, r_{14}^{\bullet} and r_{18}^{\bullet} = screened reaction rates after Itoh et al7 and Alastuey and Jancovici8 respectively.

(r_{14}^{\bullet}$), due to screening effect have been calculated for better value of Γ, becoming available and tabulated in table 1.

At higher temperature the screening effect decreases and yet the effective reaction rates increase tremendously. The mean life which is the inverse of reaction rates will be drastically altered. So a star after exhaustion of 50\% of helium will move on to a higher temperature in a very short time in comparison to earlier values of Burbidge2 et al and Duorah and Kushwaha3.

Table 1 shows that the screened rates after Itoh et al and Alastuey and Jancovici are comparable. The screening correction calculated using the methods of Itoh et al and Alastuey and Jancovici is not expected to be different as pointed out by latter authors. The difference decreases towards higher temperature warranting that both the rates will almost be the same at higher temperatures. Our results will be suitable for hydrogen-deficient carbon stars and R or B variables as they appear to have an atmospheric composition of 50\% helium and 50\% carbon.

The authors gratefully acknowledges financial assistance from UGC, New Delhi.

30 December 1983; Revised 9 October 1985

ISOCOUMARIN: SYNTHESIS OF 3-(4'-METHOXYPHENYL)-4-FORMYLISOCOUMARIN

B. K. SARKHEL and J. N. SRIVASTAVA
Department of Chemistry, Bhagalpur University, Bhagalpur 812 007, India.

3-Phenylisocoumarins possess medicinal properties and are usually obtained by condensing homophthalic anhydride with aromatic hydrocarbons phenols and phenolic ethers using anhydrous, AlCl$_3$ or SnCl$_4$ or PPA$^{1-3}$. This paper reports the synthesis of 3-(4'-methoxyphenyl)-4-formylisocoumarin by the direct condensation of 4-formylisochroman-1,3-dione with anisole in the presence of PPA.

Homophthalic anhydride (I)4 condensed with ethyl formate in the presence of sodium metoxide to furnish 4-formylisochroman-1, 3-dione(II), which reacted with anisole in the presence of PPA, to give 3-(4'-methoxyphenyl)-4-formyl isocoumarin (III). It reduced Tollen's reagent and gave a 2,4-dinitrophenyl-hydrazone derivative. Treatment with aqueous sodium hydrosxide (10\%) yielded 4-methoxy-w-(2'-carboxyphenyl)-formyl-acetophenone (IV). Oxidation of III by silver oxide in aqueous sodium hydrosxide and subsequent aciddification afforded 4-methoxy-w-(2'-carboxyphenyl)-acetophenone (VI) found to be identical with an authentic sample prepared earlier3. The IR and UV spectra were found compatible with the structure of the other isocoumarin5.

3
4-Formylisochroman-1, 3 dione (II): Homophthalic anhydride (I) (4.8 g) in dry methanol was added dropwise to a mixture of freshly prepared sodium methoxide (1.7 g) and ethyl formate (2.5 g) in methanol at 0–5° and left overnight. The reaction product was worked up in the usual way to give a white solid, recrystallized from hot water (2.15 g, 35%), m.p. 191–92°. It reduced Tollens’s reagent. (Found C, 63.4; H, 3.06%; Calcd for C₁₀H₈O₄; C, 63.15 H, 3.15).

3-(4-Methoxyphenyl)-4-formylisoucoumarin (III): The dione II (2.06 g), anisole (1.1 g) and PPA (12.0 g) kept at 110–20° for 1.5 hr gave a product which on isolation and purification by the usual procedure gave a solid, crystallized from ethyl acetate (1.3 g; 45%), m.p. 235–36°.

v_{KBr}^{\text{max}} 1740, 1720, 1620, 1610 cm⁻¹; λ_{\text{max}}^{\text{MeOH}} 312, 270, 261 nm

(Found C, 72.92; H, 4.13%; Calcd for C₁₇H₁₂O₄; C, 72.55; H, 4.28%)

4-Methoxy-w-(2'-carboxyphenyl)-formylacetophenone (IV): Treatment of III (0.7 g) with aqueous sodium hydroxide 10% at room temperature, followed by acidification gave a solid recrystallized from EtOH, m.p. 110–111°.

T_{\text{max}}^{\text{MeOH}} 275 nm

(Found C, 68.49; H, 4.61%; Calcd for C₁₇H₁₄O₅; C, 68.45; H, 4.69%)

4-Methoxy-w-(2'-carboxyphenyl)-acetophenone (V): Isocoumarin III (0.70 g) was added with stirring to a suspension of freshly prepared silver oxide obtained from (0.5 g) silver nitrate in water (10 ml) and aqueous sodium hydroxide maintained at 55–60° for 20 min. Working up the reaction mixture in the usual way gave a solid, recrystallized as needles from EtOH, m.p. 170–71°, found identical with an authentic specimen prepared earlier.

λ_{\text{max}}^{\text{CH₃}} 270 nm

(Found C, 71.08; H, 5.05%; Calcd for C₁₆H₁₄O₄; C, 71.11; H, 5.18%)

14 February 1985; Revised 19 November 1985

POSSIBLE ANTIPARKINSONIAN COMPOUNDS SYNTHESIS OF 2-STYRYL-3-ARYLTHIOURYL-3,4-DIHYDRO-4-OXOQUINAZOLINES

V. K. PANDEY
Department of Chemistry, University of Lucknow, Lucknow 226001, India.

Treatment of methyl anthranilate with acetic anhydride yielded methyl-N-acetylanthranilate which on treatment with hydrazine afforded 3-amino-3,4-dihydro-2-methyl-4-oxoquinazoline. 3-Amino-3,4-dihydro-2-methyl-4-oxoquinazoline was condensed with several arylisothiocyanates to give the corresponding arylthio urea derivatives. Interaction of 2-methyl-3-arylthio-3,4-dihydro-4-oxoquinazoline with various aromatic aldehydes resulted in the corresponding styryl derivatives in the yields ranging from 40 to 50%.

The presence of quinazolone nucleus in a number of biologically active compounds and synthetic antiparkinsonian led to a wider search in this group of compounds. Quinazolone derivatives have been reported to exhibit a wider range of biological activities like anticonvulsant, antiparkinson, antiviral, antimalarial, monoamine oxidase inhibitor and central nervous system depressant. The numerous CNS depressants and anticonvulsants have been shown to inhibit the respiratory activities of brain which ultimately lead to altered energy metabolism and neuronal functions. On the basis of these valuable observations, some new