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ABSTRACT

von Karman’'s coupled nonlinear equations extended to thermal loading for the dynamic case
have been transformed into the complex domain and with the help of conformal mapping and
Galerkin procedure the vibrational characteristics of different regular polygona!l plates have been

investigated for clamped immovable edges. Critical buckling temperatures for such plates have been
deduced as hmiting cases and compared with available results.
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nonlinear free vibrations of regular polygonal plates of
difterent shapes using the von Karman’s coupled
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equations in the dynamical case under thermal loading 0L* g&*  9&* o0¢t ) de d¢

and transformed into complex co-ordinates. Con- 0w 0 3¢ dw)\ d2z dz
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adopted throughout the analysis.
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TRANSFORMATION INTO COMPLEX

CO-ORDINATES d’w Fw dtw N\ d: dz
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The time variable is separated with the substitution
W = w(x, y)F(1) in (1) and (2) which are transformed Pw dw d¥7 dz Mo fo d: 4"
into complex co-ordinates (z, Z) where z = x + iy, and - éfi OF dEX d¢  JEY 0 dErde
then the domain is mapped onto a unit circle by the , 1_ 1
' ' — ' CN fdz\ fde
mapping function z = f ({). The above two equations P A i (4
finally reduce to the forms dg ¢ \d¢ / \dg
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FREE VIBRATIONS UNDER THERMAL
LOADING

For free vibrations it is not exactly true that M, _,; it
1s an assumption based on the neglect of temperature
vaniation in depth due to compression —nor does 1t
follow from Majumder et al® who considered M, = 0.
For f{ree thermal vibrations the temperature field
should be taken to depend on the radial co-ordinate as
considered by Buckens’ and Biswas®-® for vibrations
of thermally-stressed plates.

METHOD OF SOLUTION AND BOUNDARY
CONDITIONS

For plates with immovable edges and clamped along
the boundary the appropriate form of w(&, &)should be

w(&, &) = wo(l —&&)%, & = rexp(if) (5)

Since N 1s constant and appears in the boundary
condition for in-plane displacement we can take V2N,
= (, and considering only one term of the mapping
function, namely z = adéé where § is the mapping
function co-¢fficient and a is the characteristic dimen-
sion of the plate, the solution of (4) 1s expressed in the

form
(EE)°

73 3
¢ = ACE-%-Ehw%FZ(;)[_%{_l_ (ES)

in which A 1s a constant determined from the condition
for inplane displacement for immovable edge of the
plate in the form

~ Ehw3F*()(5-3v) Eaa’N;
B 12(1 —v) 2(1 -v)

{7)

Again retaining only one term of the mapping

function and inserting the expressions for ¢ and A into
(3) one gets the error function, Applying Galerkin
procedure one gets

d*F(1)
de?

+C F(1)+C,F*(t) =0 (8)

where

D [320 20 «Ea*’N
C; = - r
‘ a*pha'*[ 3 3 (1-wD ] ®)

D
C:= ho? (53.62)(wo /h)?. (10)

The solution of (8) is given by Nash and Moderer!!
and one gets
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T /T = — (14+C,/C) /3 (11)
where
6N %
C,/C, = 0.5026875 (w.;./h)’/(l — 16”) (12)
N%*=a,Ea*N_/D(1 —v) (13)

Table t Critical buckling temperature for polygonal plates.

Critical

buckling
Plate shape Value of 4 temperature
Equilateral triangle 1.353 8.74
Square 1.08 1342
Pentagon 1.0526 14.44
Hexagon 1.0376 14.86
Circle 1.000 16.00

Table 2 Variations of non-dimensional time-periods for different values of non-dimensional amplitudes and
thermal loading parameter.

wo/h 0 0.5 | 1.5 2

T/T Equilateral triangular plate 1 093935 08076 (0.6742 0.5600
N%=05

T*/T Square plate | 0.9404 0.81065 0.6802 0.5648
N%=05

T*/T Circular plate 1 0.9412 0.8124 06801 0.5703
N% =105

r*/T  Circular plate 1 09430 08161 06852 05763 [PS.]
N%=0 1 09436 0.8165 0.68599  0.5773 [Ref 13}

P.S.—Present study.
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CRITICAL BUCKLING TEMPERATURE,
RESULTS AND DISCUSSION

For the pre-buckling state non-dimensional time-
periods 7*/T can be obtained from (11) and (12) by
taking the values of (6%/16)N#% sufficiently near to
unity. Buckling occurs when 62N %/16 equals to unity
and the critical buckling temperature (N¥), for poly-
gonal plates can be expressed as

(N%),, = 16/8°. (14)

It is observed from table 1 that critical buckling
temperature of polygonal plates increases as the
number of sides increases.

Vanations of non-dimensional time-pericds T™*/7
for variations of non-dimensional amplitudes (wq /h)
and temperature parameter N § have been presented 1n
table 2. It is observed that the values of T*/T are less
for plates with thermal effect than for those without
thermal effect, i.e., the effect of N% is to diminish the
relative time-periods. Moreover, the nature of the
effect of N¥ on the relative time-periods is similar to
that of plates subjected to in-plane compressive st-
resses discussed by Biswas'?.
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