Current Science, January 20, 1986, Vol. 55, No. 2

67

NEW HARDWARE CIRCUITS FOR THE IMPLEMENTATION OF LOGICAL RELATIONS IN
INFORMATION PROCESSING—PART-II”

G. N. RAMACHANDRAN
INSA Albert Einstein Professor, Mathematical Philosophy Group,
Indian Institute of Science, Bangalore 560012, India.

4(c} Circuitry for deletion and branching

(i) Thedelete gate D: We have seen the application of
the delete gate D 1n figure 4. We shall now give the
nature of this gate which can be obtained by using a
single logical chip OR. The crcuit i1s shown in
figure 5{(a), where 1t is labelled D, , for obvious reasons
which will become clear below. If the pilot signal p for
the OR gate 1s set as 1 and the other input is a, with b as
the output of the gate, then it is readily venified that b

= 1 irrespective of the value of a being equal toQor 1. If
this value of b is an input into an AND gate, to which the
other input is ¢ and the output is d, then ¢ will go
unchanged to 4. Effectively the information content of
a will not pass on to the chain of operations containing
¢ and 4. Hence the name “delete” gate.

However, if the pilot signal p is set 0, then a goes
unchanged to b. Consequently b will enter into the
processing of the chain from ¢ to 4 by AND. Thercfore
by setting p as 0 or 1, we can make the signal coming
from a enter into the chain from ¢ to d or not. This
small circuit 1s all that is needed for the operator D in
figure 4.

Figure 5(b) gives a circuit diagram for another
“delete” gate, which we shall label as Dy. In this case,
the values of c and 4 are connected by an Or gate with a
being the second input to OR. The logic chip AND and
the pilot signal p modifies this so that when p is 0, it
makes b to be always 0 irrespective of a being 1 or 0.
Therefore this signal on passing into the OR gate on the
right makes no change in the transfer of signal from ¢
to d. If, however, p = 0, then a goes unchanged into b
and enters the chain ¢ to 4 via OR.

These two delete gates D, and D, would find large
application in a variety of problems.

(i{) Branching gates BiN and BouT: The major circuit
that we shall discuss below is the comparison of two
binary numbers a and ¢ to find out whethera > £, a

*This part I} is incontinuation of Part I, which appeared in
the last issue of this journal Curr. Sci,, Vol. 55, No. 1. January

5, 1986, pp. 1218, The abstract is in Part |.

(a)D b=1,forbothu-0undu=1

1 .

(b) D, : b=0, for both a=0 and a=1

Figure 5. “Delete” gates D, and D,,. The former gives
an output b = 1 irrespective of a being 1 or 0 and
passes a unchanged when p = 0. Similarly D, gives b
= (irrespective of a being 1 or 0 and passes a
unmodified when p = 1.

= ¢and a < ¢. In this, it would be greatly beneficial if a
circuit element, which we have named BIN (Branch-in),
1s used as one of the clementary components, just as
AND and OR are used. A similar circuit element BOUT
(Branch-out) also will greatly help in buillding com-
plicated logic circuits. The properties of BIN and BOUT
are given in figures 6{(a) and (b). As in the case of the
delete gate, both BIN and BOUT employ a pilot input p
whichcan besetas O or 1. In BIN, if p = 0, 4, is output
as b, and when p = 1, a, 1s output as b. The Boolean
numbers 0 and 1 for p are marked against the inputs

Current Science, January 20, 1986, Vol 55, No. 2

|
BOUT

®_.._

Figure 6. BIN and BOUT gates activated by the pilot
signal p = 0 or 1. BIN has two inputs d;, a, and one
output b while BOUT has one input a and two ouputs
b,, b,. See text for details.

from a, and a, respectively in figure 5(a). In exactly the
same way, the component BOUT also has a pilot input p
which is Boolean, having values of only Oand 1. In this
case, if p=0, a is output as b,; while if p=1, a is
output as b,. We shall not give a description of these
with AND and OR gates, but shall treat BIN and BOUT
themselves as elementary circuit components. The
utility of this is particularly evident from the appli-
cation given below for arithmetic checking of equality,
greater than, and less than, relations.

The equations involving BINand BOUT are written as
follows:

p BIN (a,, a,) = b and p BOUT a = (by, b;)

In each case, a,, a, or by, b, correspond, respectively,
to the values of p = 0, 1.

(d) Circuitry for checking the relations equal to, greater
than, and less than.

We assume that the two numbers a and £ are given in
the binary system, and that they have atmost r binary
digits. We shall illustrate the principle of the circuitry

by taking r to be 8, with ¢ and ¢ being integers. The
digits are numbered in reverse order by the index j = 1
tor (= 8)and the values of a;and ¢, are denoted by a, ;
and a, ;. These are indicated in the top two rows of
table 2. The principle of the logic involved is given by
Eqns (14a to e) which relate the values of (b, ;_; by ;-)
to the values of (b, ; b, ;) for the digit j. In the
intermediate steps, we have the quantities (d, ; d, ;) and

p; as given by Eq. (14a, b, c)

b.j-1 OR G, ;(=a;)=4d,; (14a)
bpj-1 OR Gy ;(={¢;) =d, ; (14b)

d,; AND dg ; = p; (14¢)
P; BIN (by ;- 1,dy;) = by (14d)
Pj BIN (by ;- 1,dg ;) = by (14e)

We start with (b, ¢ by o) = (0 0) corresponding to
j = 0and apply the set of Eqns (14)forj = 1 to 8, when
the data in the last two rows of table 2 are obtained by
stepwise calculation of the b’s from j—1 to j.

The logical equations in (14) have the property of
giving the output {(b,,b,,) as (190),(00) or (01)
according as a>{,a={¢ or a <{. The principle
involved is the fact that if two integers in the binary
system, namely a and ¢, with digits (a; b;) = (a, ; a4,;)
have the relation a >/, then, on comparing the
Boolean values of a, ; with a, ;, the two will be found to
be equal for all j from 1 to some j;, — 1 and we will find
them different for j = j,. Suppose a,; = 1 and a4 ;
= 0 for the first time for some j, < r. The requirement
we have arranged is that (b, ; b, ;) will remain (00)
until this value of j =j, is attained, when (b, ; b, ;)
changes over into (1 0), and remains unchanged there-
after, for higher values of j > j;, until j reaches the
value r, whenitis outputas b = (b, b,) = (1 0) (aindicat-
ing a > £).

Table 2. Digit-wise progression of the checking of two binary
integers for equality, greater than and less than®

J 0 1 2 3 4 5 6 7 8
d, - 011111 1°1
d ~ 01001100
P — o1 001100
b, 0 001 1 1111
by, 0 00000000

*Sece text for the explanation of the contents,

Current Science, January 20, 1986, Vol. 55, No. 2

69

In exactly the same way, if a < Z,theinputb, = (0 0)
goes unchanged as by, b,, . . ., bj,-l unti a difference
between a, ;4 = 0 and ag; = 1 1s noticed for the first
time for j = j,. Then b; becomes (0 1), and remains so
thereafter until it i1s output for j = ras b = (b, b;), and
this happens irrespective of the values of a; found for j
=(jy+1)tor.

If, however, a = ¢, then necessarily a, ; = a, ; for all
j, and by = (0 0) comes out unchanged as the output
b=>b,=(00). Thus the three possibilities a > ¢,
a = {, a < { are simultaneously checked by the circunt,
and the information as to which i1s true becomes
available in the form of the output 2-vector (b, by),
which will have the value (10), (0 1) or (00), cor-
responding respectively toa > ¢,a < and a = 0.

The circuitry in figure 7 takes care of the logical
operations (14a to e) for one dignt (j), with
(bs;-1 by ;1) as input and (b, ; by ;) as output. We
shall briefly explain the way in which Egqns (14a-€)
corresponding to figure 7 are utilized in the complete
process of checking against £, by taking the example in
table 2.

Starting from (b, o bg o) = (0 0) in the first column
with j = 0, the data forj = 1 do not introduce any new

features and the values (00) go unchanged into
(be1 bg1)via(d, s dg 1) The dignts (1) of (a,; g, ;) for

—
(ba J—{on
(§ -1

For j =1

input b,=0, bﬂsﬂ

For]=1I'"

output b= (b, bﬂ}

Figure 7. Circuit diagram for the analysis of the
relation between two binary numbers as being greater
than, equal to, or less than. The set of hardware
components needed for one digit j 1s shown.

j = 2 makes p; = 1, so that the vector b, again goes
unchanged via the BIN gate into b,. When, however, 2
difference between a; and ¢, is noticed for the first time
for j =j, =3, Eqns (14a and b) give (10) for d;.
Consequently p; is 0 and d; goes in as b; = (10),
indicating that we have noticed the first digit n
decreasing order (j,)at which a; > ¢;. (Obviously if for
the first time (for j = j,) it is found that g; < ¢, , then
b, will become (01). Also, if a; =, b, becomes
(0 0).) Thus, the requisite property mentioned above
for the simultaneous checking of the three relations
a>/(¢,a=/¢ and a < ¢ according to the value of the
vector a; becomes established for j, , the digit for which
the difference is noticed for the first time.

Moreover, the circuitry in figure 7 has also the
property of maintaining the value of b; for all values of
j > j,; by virtue of the nature of the Eqns (14a to e).
Thus, if the two digits a; and ¢; are equal to 0, as for
j = 4, the circuit passes b; = (1 0) unchanged from j
= 3 to j = 4. Similarly, for j =35, even though the
inequality between a; and ¢; is reversed to make a
= (0 1), still since d, = | and dy = 1 makes the pilot
signal p; = 1, b; is passed on as b;_,, and the value
(1 0)is passed on forj = Salso. For the next digat with j
= 6, we have a; = 1 and ¢; = 1 yielding p = 1 via d,
=1 and dy = 1, so that once again b passes on
unchanged as bg = (1 0). What happens for j = 71sa
repetition of that for j = 4. Also, for j =8, we en-
counter once again 4; = 1, ¢; = 0 and it only transmats
the vector b, = (1 0) into the output signal bg = (1 0).

Thus we have obtained a simple design, using only
five logic chips for each digit, which can compare two
binary numbers a and ¢ and give the output signal in
the form of one of the three 2-vectors (1 0), (0 0), (0 1),
accordingas a > £, a = ¢, a < { respectively. The util-
1ization of these so as to obtain any one of the matching
conditions mentioned in Eq. (13) ts simple aad this 1s
indicated in figure 8, and bricfly explained in the next
subsection {e).

(e) Circuits for utilizing comparison test in (d).

We have seen in the previous section how a single
check of all the binary digits of two integers aand £ can
give three different outputs for (b, by) according as the
arithmetical relation >, =, <, is satisfied for a REL /.
In figure 8, we show how we can get an one-element
Boolean number (1 or 0) for the truth and falsity of any
one of the five relations >, =, <, 2 or <, using the
output of figure 7, namely the vector b = (b, b,). The
essence of the circuit is that cach of the three possibil-
ities for the 2-element vector, namely (1 0), (0 0), (0 1)1s

Current Sfience, January 20, 1986, Vol. 55, No. 2

Figure 8(a). Circuit for utilizing the BA-2 vector
output (b,, b,) of figure 7 so as to obtain Boolean (BA-
1) outputs for the relations REL = >, =, <, 2, <.

Figure 8(b). Boolean output x4 for the ‘Range’ re-
lation REL = ¢, € a € ¢;.

? 94
oR | on——@

Figure 8(c). Boolean output x, for the relationa = ¢,
or (2 Of (3

compared via the two EQU operators to the cor-
responding elements (b, bg). Consequently, when a
match is obtained for one of the testing circuits marked
A, B, C then, the corresponding output is ! and the
outputs of the other two will be 0. Thus, if (b, b,)
= (10), it will give a Boolean output x;, =1 1n 4
corresponding to a > ¢ and both x, and x; will be 0;
similarly for the other two checks in B for equality and
C for less than. Thus, effectively, we have obtained the
required outputs Q or 1 of the check for a REL £ for each
of the relations REL = >, =, <. Similarly by combin-
ing x,; and x, by the connective OR to obtain x4 we geta

Boolean check for 2> for REL, and by combining x, and

x; by OR we obtain x4, giving an one-element Boolean
output for <.

Often there is a need to have a relation REL of the
type ¢, € a £ {£,. The circuit for this is shown in
figure 8(b) in which we use the outputs of two com-
panson circuits based on figure 7 for a RELZ, and a
REL ¢, . [f we combine these two by the connective AND
we obtain the Boolean output x4 marked ‘Range’
which will test the truth or falsity of £, < a < I,.

So also, 1t 15 possible to check for a = ¢, or a = ¢,
or a = ¢, by combining the outputs of the circuits
checking these, which we may denote by
X3 (€1), X3 (£;), x5 (£3) and connecting them logically
by multiple OR gates to represent the logical equation
(15).

(@={¢,)OR(a={¢;)0R(@a={¢4)=b (15)

as shown in figure 8(c). It is obvious that b will be 1 if
any one of the relations between a and £ mentioned in
Eq. (15) is satisfied.

The circuits mentioned above are expected to be of
good use even in orthodox computer circuitry. We
shall not comment on this or other possible appli-
cations mentioned in this section, but consider in the
next Section 5 some circuits of a general nature based
on those we have discussed so far, which can find
application in computer science in general.

5. Computer circuitry to implement some general types
of relations in multivalued logic (M V'L).

(i) General relations between n-vectors.

The logical relations in (10d, e, f, g) in the theory of
relations can be generalized to take the forms in (16a,
b) given below. ’

V (@RELb) = V¢ =c¢ (16a)
j=1ton J
A\ (a,RELb) = N\¢;=c¢ (16b)

f=1ltan j

where a;, b, for j = 1 to n, as well as c, are Boolean
numbers. Denoting the summation operator in (16a
and b) generally by the symbol “CON" (standing for
connective), the above two equations can be written for
direct implementation in logic circuitry by the Eq. (17)
below.

(a; RELb,;) CON (@, RELb;)CON ... CON(a, RELb,)=¢
(17)

Figure 9 gives the circuitry that implements Eq. (17), in
which both REL and CON are BA-1 operators (logical

Current Science, January 20, 1986, Vol. 55, No. 2

71

@1

REL s o0 REL

-

CONy—®= o« a » — o= CON

Figure 9. General multi-valued logic equation in BA-
n represented by circuitry using only logic gates in BA-
1

gates) such as AND, OR, EQU, IMPeic. In Eq. (17) REL-j
forallj = 1 to nare taken to be the same and so are all
the connectives CON. In this form, the generalization
Eq. (17) has some very interesting consequences which
are shown 1o table 3. We restrict ourselves to the
connectives AND and OR for CON, while we use three
possible BA-1 operators AND, OR and EQU to replace
REL in Eq. (17) and figure 9. Then, according to the
value of ¢ = 1 or 0, and the nature of the connective
CON and the relation REL, several QPL binary relations
in predicate logic can be implemented. A partial list of
the most prominent among these is given in table 3. It
will be seen that all the four quantifiers v, " 1v, 3, 13
are available by different combinations of AND and OR
and of ¢ =1 and . An explanation of why these
quantifiers occur becomes obvious by an inspection of
figure 9 and the substitutions of the logical connectives

for REL and CON.

Table 3 Special cases of REL and coN leading to binary
relations in quantified predicate logic

BA-1 con- Truth value
Sl nective in Summation of binary

No a; REL b; via CON relation QPL binary relation
1 AND AND) (Vi)(a; & b))
2 AND AND 0 F (VY)(a, & b))
3 AND OR 1 (3) (a; & b,}
4 AND OR 0 3 (F)(a; & b))
5 EQU AND 1 (¥)) (a; = b))
6 EQU AND 0 3 (V) (a,=b))
7 EQU OR | (3j) (a, = b))
8 EQU OR 0 = () (a; = b))
9 OR AND 1 (V) (a; Vb))
10 OR AND 0 3 (V) (a; Vb))
i1 oR OR | (3)(a, Vb))

Q A () (a; Vb))

12 OR OR

— -

il

(ii) QPL binary relations covering multivalued relaiions
of the type in Eq. (16) and (17).

The third row of the data in table 3 has already been
considered and illustrated in figure 2(a), with g; replac-
ing a; of table 3. As will be seen from that, the output ¢
is equal to 1 if any one of the r¢lations g; AND b, = ¢,
gives ¢; = 1. Thus this circuit has the property that if
any corresponding pair of elements g; and b, of the n-
vectors @ and b are both unity, then ¢, is equal to 1.
Hence, the QPL description in the third row of table 3,
modified as (3/)(g; & b;), is seen to be satisfiedif ¢ = 1.
On the other hand, if all the individual relations are not
satisfied, we have ¢; =0 for all j =1 to n, and the

summation Y c; =c¢ will be 0. Hence there are no

7
elements in common between the n-vectors a and b.

Thus, the fourth row of table 3 corresponds to =3 3 (a;
& b;).

The 5th and 6th rows of table 3 have already been
represented in figure 2(e), also with g replacing a. In
this case, the relation REL is EQU, which is satisfied if
both g;and b; are equal to 1 or if both are equal to 0. In
this case, we get a complete match between the n-
vectors g and b, which can be represented by g = b.
The corresponding QPL-1 relation {Vj) (g; = b;) ob-
viously represents this situation. On the other hand,
when ¢ = 0 as in row 6, we can only say that @; = b; is
not true for all j, yielding the quantifier 3 V.

In the above description, we have shown the genesis
from MVL of the four types of quantifiers used in
predicate logic, namely ¥V, 3 v, 3, 3 3. The relation
within the bracket which 1s operated upon by the
quantifier is seen to be the same as the BA-1 connective
given in the first column of each row. We have only
taken three BA-1 connectives namely AND (&)
OrR (), EQU (=) in table 3; but the technique is
obviously generalizable for any logic chip of the types
given 1n (18) below and implemented by summation via
AND or OR to give all possible QPL binary relations
which could be employed in standard QPL-1 equations.

AND, NAND, OR, NOR, EQU, XOR and others
obtained by complementing a and/or b (18)

(1) Single logic circuit with facilities to impiement any
BA-1 connective of the type OR or AND

Figure 10 given below is the circuit diagram of such
a chip with three sign switches o,, o, and o, 10 take care
of the eight possible relattonal connectives which can
be obtained from OR and AND by negating either a, or
b, or ¢, in the general equation a REL b = ¢, The

72

Currem_Scfence. January 20, 1986, Vol. 55, No. 2

Eal tEQuU

Figure 10. A general circuitry for a REL b = ¢, con-
sisting of @; REL b; = ¢;for all j, in which REL can be set
to be any one of the eight BA-1 relations
A A0 0L), J° by the setting of the three
“sign” switches o,, 0,, g.. (See table 4).

principle of the circuit ts very simple. It 1s based on n
logic gates which connect aj}, b with ¢, by the connect-
ive OR Then, there are circuits, employing EQU as
shown in figure 2(b), which can negate a;, b; or c;.
Then, since each one of the three n-vectors a, b, ¢ can
be affirmed or complemented there are eight possibil-
ities for the effective BA-1 connective that is obtainable
from OR by this process. We shall not explain them, but
list them in table 4 corresponding to the different
settings of o,, ¢, and o.. The standard name of the
effective relational connective REL, as well as its symbol
in our BVM formalism, are given in each row. Some of
the symbols require explanation. Thus IMP stands for
“implication” in the form ¢ = band has the symbol lin
our notation. The reverse relation for this, namely in
the form b = a, is given the symbol RIMP, to stand for
“reverse mmplication”, and is denoted by J in our
notation. Just as OR and AND can have their com-
plemented forms NOR and NAND, we can also comp-
lement IMP and RIMP to obtain I and J¢ respectively.
The symbols for these (# and <t) are obvious, but
since they are very rarely used, we have the 6 and 7
letter symbols NOT IMP and NOT RIMP for these.

The complete circuit shown in figure 10 can thus

Table 4 Nature of logical connective REL in a REL b = ¢ for

different settings of o, 0,, o, in Fig. 10

Relational
St connective® BYMF
No a, O, o, REL operator
1 i 1 1 or (V) 0
2 1 1 0 NOR {) O
3 0 1 1 IMP (=) I=NO
4 0 1 0 NOT IMP { 7) IF=AN
5 1 0 ! RIMP (<=) J=0ON
6] 0 0 NOTRIMP (<) J°'=NA
7 0 0 i NAND (}) A"
g 0 0 0 AND (&) A

YIMP == imply (as in a =>b), NOT IMP == dpes not imply, RIMP
=imply in the reverse sense 1.e. b=>a, NOT RIMP = (Db & a)

take care of any of the eight classical connectives of
BA-1, used in propositional logic, extended to multi-
valued Jogic. |

We have not covered the connective EQU (E) and its
negation XOR (E°) by the circuitry in figure 10. It is
suggested that the same circuit as in figure 10 be
employed for these, replacing the OR gates in that
figure by EQU gates. Then the various possible settings
of o,, 0, and o, convert these two operators into one
another, four of them being identical with EQU and
four others with XOR.

Thus the ten standard connectives for binary re-
lations In propositional calculus can be implemented
via logic gates, and a row of n of these will take care of
binary relations in n-valued logic and its associated
Boolean algebra BA-n.

ACKNOWLEDGEMENTS

The author wishes to acknowledge his gratitude to
Dr Veni Madhavan of the School of Automation of
this Institute for indicating types of problems that are
met with in information processing, which led to this
investigation. The cooperation of Mr. T. A. Thanaraj
in working out and constructing simple logic circuits
for PC and QPL helped the author greatly in generaliz-
ing them and obtaining the results presented here. The
author is particularly grateful to the Indian National
Science Academy for providing him with an Emeritus
Professorship (Albert Einstein Professor) in this
Institute.

