horse and acting lofty. For the twenty years I have known him I have only found him modest, shy and possibly a bit 'reserved' towards strangers.

Bünning's entirely original idea that 'circadian rhythms act as yardsticks' in measuring seasons was first set out in a paper he published in 1936. This paper (Bünning E. Die endonome Tagesrhythmitik als Grundlage der photoperiodischen Reaktion. Ber. Deut. Bot. Ges. 54: 590–607, 1936) became a citation classic of Current Contents in 1982 and the idea conveyed in it is today known as Bünning's hypothesis.

Prof. Bünning was Dean ('47–'48), and Vice-President ('52–'53) of the University of Tübingen and the Director of the Botanical Institute there for over quarter of a century (1945–1971). During this period Tübingen was the very epicentre of biological rhythm research. Quite a few Indians too had worked with Bünning especially in the fifties and sixties as pre-doctoral and post-doctoral researchers.

Bünning published the first monograph on the subject of biological rhythms (Bünning, E, Die physiologische Uhr, Springer-Berlin 1958) and a highly regarded text book on plant physiology and some 260 original research papers, The Universities of Glasgow (1974), Freiburg (1976) and Erlangen (1977) have honoured him by conferring on him doctorates honoris causa.

He is a Fellow of seven academies including the National Academy of Sciences, Washington (Foreign Associate) and Honorary Member of half a dozen International Societies. He has been the Editor (European) of Planta (Berlin) for several decades and on the Editorial Board of Zeitschrift für Naturforschung. Bünning's name is already etched deep in the annals of scientific fame. On the occasion of his birthday all his admirers and students who are scattered over the USA, UK, Scandinavia, Greece, Japan, Pakistan, India and the Soviet Union would wish him many happy returns of the day and many more years of healthy life in the company of his beloved wife Eleanore, his children and grand children. All active chronobiologists know that he still reads what is being published and, what is more, has the right thing to say of the quality of the findings. To the dismay of many he still says, once in a while, 'Pfeiffer knew'.

M. K. Chandrashekaran
Department of Animal Behaviour,
School of Biological Sciences,
Madurai Kamaraj University,
Madurai 625021, India.

NEWS

MORE WORK ON HYDROGEN ATOM

A joint project bringing together the resources of Windsor University in Ontario and Stirling University in Scotland, has been set up to take the investigation of the behaviour of the hydrogen atom a stage further.

Stirling University's physics department has developed an intense, efficient, reliable source of atomic hydrogen. The University of Windsor's physics department has extensive experience in measuring the kind of data required. The project draws on the experience of both the departments.

Following the data from Voyager space programme, interest has turned to basic electron-hydrogen atom scattering parameters. New measurements are now being sought by researchers interested in modelling the processes that take place in planetary atmospheres.

In view of this requirement, a further source of atomic hydrogen has been built and tested at Stirling, and Stirling physicist Dr Jack Woolsey has joined Professor Bill McConkey at the University of Windsor for five months' work on the project. In addition, the University of Windsor has offered access to some expensive apparatus necessary for performing the associated experiments, which is not available at Stirling. (Science and Technology News, British High Commission, Chanakyapuri, New Delhi 110 021).