set of experiments the healthy plants were treated with
tetracycline and inoculated by grafting. The treated
plants required 23 days to show the first symptom,
whereas in the untreated, the symptoms appeared
within 15 days. The typical yellow symptoms and
remission of symptoms by antibiotics, confirm the
eliology of mycoplasma organism. The occurrence of
similar yellow disease in peanut has not been reported
earlier from India5. Further studies on transmission
by vectors, host range and electron microscopic
studies are in progress.

Thanks are due to Dr R. Jayarajan, Professor of
Virology, Tamil Nadu Agricultural University,
Coimbatore for his help in the identification of
the disease.

4 March 1985; Revised 2 August 1985

1079, 93, 173.

4. Sreenivasalu, P., Iizuka, N., Rajeshwari, R., Reddy,
98, 255.
5. Iizuka, N., Rajeshwari, R., Reddy, D. V. R., Goto,
T., Muniappa, V., Bharathan, N. and Ghanekar,
6. Sastry, K. S., Plant virus and mycoplasmal diseases
in India. A Bibliography, Bharati Publications, New
Delhi, 1980.

TWINS AND TRIPLETs IN MACHILUS
BOMBYCINA KING (LAURACEAE)

MD. ISA, M. DEVNATH and K. THANGAVELU
Regional Muga Research Station, Central Silk Board,
Mirza 781 125, India.

MACHILUS BOMBYCINA (Assamese: som) is one of the
primary plants for feeding Muga Silkworm
(Antheraea assama Westw). While raising seedlings of
som for muga culture during July 1983, a few twin
seedlings were observed. In June-July 1984, again
some twins and a few triplets were observed 6-8 weeks

Figures 1 a-c. 'Singlet', twin and triplet seedlings of
Machilus bombycina respectively. The two horizontal
lines are the threads used to hold the seedlings in
proper alignment.
from seed germination in the nursery beds. To our knowledge this is the first report of twins and triplets for Lauraceae.

Of 1000 seedlings screened 30 days from germination, 45 were twins (4.5%) and 6 were triplets (0.6%). Each seedling was complete with an independent root-shoot axis (figure 1 a,c). The member seedlings were detached and planted separately to study their growth in comparison to that of 'single' seedlings, i.e. single seedlings obtained from seeds. Five months after planting all twins and triplets developed into independent saplings. They did not differ from the singles except in growth rate. The data on the lengths of shoot and root, the number of leaves per seedling, and the leaf size show that the singles are superior to twins and triplets (table 1). In the twins and triplets usually one of the seedlings showed vigorous growth. Studies on the origin of twins and triplets are in progress.

INTERFERTILITY STUDY AND OXIDASE TEST OF DUPORTELLA TRISTICULA (B & BR) REINKING

A. B. DE
Department of Botany, Burdwan Raj College, Burdwan 713 104, India.

FROM an exhaustive study on several members of Polyoparaceae Nobles1 put forward the hypothesis that in this family, the species which possess bipolar type of interfertility give a negative reaction in oxidase tests and are associated with brown rots; while the species showing the tetrapolar type of interfertility give positive reactions in oxidase tests and cause white rots. She claimed taxonomic value for the type of decay, type of interfertility and results of oxidase tests. Accurate assessment of taxonomic importance of these characters requires a collaborative study on these aspects of many other families of Basidiomycetes, particularly from tropical regions which still remain to be investigated. The present paper gives the results of a study of the interfertility test and oxidase reactions of Duporiella tristicula (B & Br) Reinking, a woodrotting member of Corticiaceae, together with the type of rot it produces.

Two sporophores of D. tristicula were collected—one from Bankura, West Bengal, India on a dead branch of Gossypium herbaceum L. and the other from Burdwan, West Bengal, India on a dead branch of Saraca indica L. These two sporophores along with their hosts have been deposited in the Mycological Herbarium of Burdwan Raj College, Burdwan, West Bengal, India under the numbers BRCMH T51, and BRCMH T53 respectively.

Ror: It was found that D. tristicula caused white rot on both the hosts examined.

Oxidase test: Oxidase test was determined by growing the polysporous mycelia of both the isolates of D. tristicula for seven days on plates of malt agar containing 0.5% gallic acid and 0.5% tannic acid following the method laid down by Davidson et al°. The appearance of dark coloured zones in the media presented positive proof of the production of extracellular oxidase enzymes.

Interfertility test: Twenty monosporous cultures were isolated from each of the two sporophores following the usual dilution method. When the monosporous cultures showed good growth, they were checked carefully for clamp connections. The absence of clamp connections was taken as confirmation of their mono-