STUDIES ON NITROGENASE EXPRESSION IN RELATION TO GLUTAMINE SYNTHETASE I AND II OF RHIZOBIUM MUTANTS

KETAN SHAH*, SHOBHA VANCHISWAR and V. V. MODI

Department of Microbiology, M. S. University of Baroda, Baroda 390002, India
Present address: Nitrogen fixation and Soybean Genetics Laboratory, H H-19, Building 011, BARC-West Beltsville, MD 20705, USA.

ABSTRACT

An inverse relationship between the level of glutamine synthetase (GS) II and adenyllylation (En) of GS I was observed in different mutants of *Rhizobium meliloti* 03. The En of GS I was significantly lower in aerobic conditions than in aerobic conditions. The mutants of *R. japonicum* D211 expressed higher En of GS I with lower nitrogenase activity.

INTRODUCTION

Positive evidence about the role of glutamine synthetase (GS) in the control of nitrogenase synthesis has been well presented\(^1\)\(^-\)\(^4\). It has been found that *R. japonicum* contains two forms of GS, designated\(^5\) as GS I and GS II. GS I is reversibly adenylated, repressed only two-fold by ammonium ions and is heat stable at 50°C whereas GS II is thermostable and cannot be adenylated. GS I plays a major role in nitrogenase regulation, whereas GS II may be required for purine biosynthesis\(^6\)\(^-\)\(^8\). Ludwig\(^7\) reported that nitrogenase in *Rhizobium* sp. 32 H1 is regulated by unadenylated GS I. Fuchs and Keister\(^8\) identified two distinct GS in *Agrobacterium* and fast-growing *Rhizobium*. It was also found that possession of GS II appeared to be a specific attribute of *Rhizobiaceae*\(^9\). It has been suggested that in *Klebsiella pneumoniae*, the *hut* and *nif* operons are regulated by the *nir* genes which are linked to the structural gene for GS\(^10\)\(^,\)\(^11\). In this paper, nitrogenase expression was studied with respect to the level of GS II and the adenyllylation (En) of GS I in different mutants of *R. japonicum* D211.

MATERIALS AND METHODS

Bacterial strains

Rhizobium japonicum D211 was obtained from M. Moreckova, Research Institute of Crop Production, Ruzyně, Prague, Czechoslovakia. *R. meliloti* 03 was isolated from the nodules of *Trigonella foenum-graecum* L in this laboratory.

Media

The stock rhizobial cultures and their mutants were maintained on yeast mannitol medium\(^12\) solidified with 1.5% Davis New Zealand agar. For the asymbiotic nitrogenase assay, the LNB-5 medium was used as described by Kurz and LaRue\(^13\).

Asymbiotic nitrogenase assay

Freshly grown mutants of *R. japonicum* D211 were transferred aseptically onto the LNB-5 slants and incubated for 36 hr at 28 ± 1°C in anaerobic condition. Nitrogen from each tube was replaced by argon gas. One ml of pure acetylene gas was then injected in each tube. After an incubation of 1 hr, 2 ml of gas phase from each tube were drawn and injected into gas chromatograph (CIC Baroda). The reduction of acetylene to ethylene was monitored as described by Kurz and LaRue\(^13\).

Glutamine synthetase (EC. 1.6.3.2) assay

After assaying nitrogenase, the cells were scraped from the LNB-5 slants, washed twice and resuspended in 5 ml of glass distilled water. This was then used for the whole cell assay of glutamine synthetase I and II. Cetyltrimethyl ammonium bromide (CTAB)-treated cells were used for γ-glutamyl transferase assay as described by Bender et al\(^14\). For adenyllylation of GS I, 1 ml of distilled water in assay mixture was replaced by 0.8 M MgCl\(_2\). For GS II assay, 0.5 ml enzyme aliquots of different samples were treated at 60°C for 15 min (for *R. japonicum*) and at 50°C 15 min (for *R. meliloti* 03) in a water bath. The enzyme system contained 0.8 ml of assay mixture, 0.1 ml of enzyme (whole cells) and 0.1 ml of 0.2 M glutamine, and 2 ml of stopping mixture was added to stop the reaction after an incubation of 30 min at 37°C. γ-glutamyl hydroxamate was measured at 540 nm in a Bausch and Lomb
Spectronic-20 colorimeter. Specific activity of the enzyme was defined as γ-glutamyl hydroxamate formed per mg protein per minute at 37°C. Adenylation (Eₙ) of GS I was calculated using a formula as described by Ludwig⁶.

\[
E_n = 12 \left(1 - \frac{\text{activity (}+\text{Mg}^{2+}\text{)}}{\text{activity (}−\text{Mg}^{2+}\text{)}} \right)
\]

For assaying glutamine synthetases in aerobic conditions, cultures were grown overnight at 28 ± 1°C in liquid LNB-5 medium on a shaker.

Whole cell protein assay

One ml sample was boiled with 0.5 ml of 1 N NaOH for 10 min. After cooling, the whole cell protein was assayed by Lowry's method¹⁵.

EXPERIMENTAL RESULTS AND DISCUSSION

GS I and II were both assayed by γ-glutamyl hydroxamate 'transferase' reaction as shown in the following equation.

\[
\text{L-Glutamine + NH}_2\text{OH + ADP \to GS} \gamma-\text{glutamyl hydroxamate + AMP + Pi}
\]

Shapiro and Stadman¹⁶ have shown that transferase activity in *E. coli* measured in the presence of 60 mM Mg²⁺ was directly proportional to the amount of unadenylated GS. It varies from unadenylated (Eₙ = 0) to fully adenylated (Eₙ = 12). Therefore, the ratio of transferase activities measured in the presence and absence of Mg²⁺ yields the average adenylation state (Eₙ) for the enzyme¹⁶ at an appropriate pH (7.2) where both forms of the enzyme have equal activity¹⁴. The same approach was made in the present studies to determine the Eₙ of GS I from *Rhizobium* mutants (table 1).

Table 1 Relation between GS II and adenylation (Eₙ) of GS I in *Rhizobium melliloti* 03 mutants grown aerobically

<table>
<thead>
<tr>
<th>Strain/Mutants*</th>
<th>% GS II**</th>
<th>Eₙ of GS I**</th>
</tr>
</thead>
<tbody>
<tr>
<td>R. melliloti 03 (RM 03)</td>
<td>36</td>
<td>6.6</td>
</tr>
<tr>
<td>RM 03, Rif, Amp-1</td>
<td>77</td>
<td>2.2</td>
</tr>
<tr>
<td>RM 03, Rif, Amp-2</td>
<td>77</td>
<td>3.4</td>
</tr>
<tr>
<td>RM 03, Strep, Rif, Amp-1</td>
<td>80</td>
<td>3.4</td>
</tr>
</tbody>
</table>

* Following symbols denote resistance to the antibiotic: Rif = rifampicin, Strep = streptomycin and Amp = ampicillin. These mutants were isolated by ethidium bromide (10 μg/ml for 1 hr) induced mutagenesis.
** GS II activities and Eₙ of GS I were calculated as described in materials and methods.

Fuchs and Keister⁴ reported that GS II is inactivated by the heat treatment at 50°C for 1 hr. This has been confirmed by George et al.¹⁷ from this laboratory. Therefore, GS II activities (table 1) were found by subtracting specific activities determined in heated samples (i.e. GS I) from those obtained in unheated samples (i.e. total GS). It was observed that when the % GS II was high, Eₙ of GS I was low. This was supported by Ludwig's report⁷ about the inverse relationship between the level of GS II and Eₙ of GS I. It has been reported from this laboratory that the levels of GS II and the Eₙ of GS I were either co-ordinately regulated or that one affected the other¹⁷.

It was interesting to find that anaerobically grown *R. melliloti* 03 mutants also showed an inverse relationship between GS II and Eₙ of GS I (table 2). However, the Eₙ values were significantly lower as compared to those obtained in aerobic conditions. This can perhaps be attributed to the fact that in anaerobic conditions, O₂ is comparatively unavailable, which in turn results in low levels of ATP and low Eₙ. It has been found that the GS I deadenylates prior to the appearance of nitrogenase activity when cultures of slow-growing rhizobia are subjected to microaerobiosis¹⁸. Therefore, further attempts were made to study the correlation if any, between Eₙ of GS I and symbiotic nitrogenase activity using mutants of slow-growing *R. japonicum* D211.

Lower Eₙ of GS I was linked with higher nitrogenase activity (table 3). This indicates that adenylation of

Table 2 Relation between GS II and adenylation (Eₙ) of GS I in *Rhizobium melliloti* 03 mutants grown aerobically and anaerobically

<table>
<thead>
<tr>
<th>Strain/Mutants*</th>
<th>% GS II</th>
<th>Eₙ of GS I</th>
<th>% GS II</th>
<th>Eₙ of GS I</th>
</tr>
</thead>
<tbody>
<tr>
<td>R. melliloti 03 (RM 03)</td>
<td>36</td>
<td>6.6</td>
<td>53</td>
<td>4.6</td>
</tr>
<tr>
<td>RM 03, Kana-2</td>
<td>33</td>
<td>8.9</td>
<td>53</td>
<td>0.3</td>
</tr>
<tr>
<td>RM 03, Strep-2</td>
<td>25</td>
<td>8.3</td>
<td>79</td>
<td>2.2</td>
</tr>
<tr>
<td>RM 03, Rif-1</td>
<td>16</td>
<td>10.0</td>
<td>75</td>
<td>1.0</td>
</tr>
</tbody>
</table>

* Following symbols denote resistance to the antibiotic: Kana = Kanamycin, Rif = Rifampicin and Strep = Streptomycin. These mutants were isolated by ethidium bromide (10 μg/ml for 1 hr) induced mutagenesis.
** Grown in the LNB-5 medium on the shaker
*** Grown on slants of the LNB-5 medium under nitrogen gas. Other details are described in the legend to table 1.
Table 3 Expression of nitrogenase activity in relation to adenyllylation (E) of GS I in Rhizobium japonicum D211 mutants

<table>
<thead>
<tr>
<th>Strain/Mutants*</th>
<th>% GS II</th>
<th>E of GS I</th>
<th>nmol C₂H₄/mg protein/hr</th>
</tr>
</thead>
<tbody>
<tr>
<td>R. japonicum D211 (RJ D211)</td>
<td>21</td>
<td>1.0</td>
<td>17.9</td>
</tr>
<tr>
<td>RJ-UV-1</td>
<td>11</td>
<td>1.0</td>
<td>18.1</td>
</tr>
<tr>
<td>RJ-EB-46</td>
<td>22</td>
<td>4.4</td>
<td>6.5</td>
</tr>
<tr>
<td>RJ-NTG-5</td>
<td>31</td>
<td>4.7</td>
<td>5.5</td>
</tr>
<tr>
<td>RJ-AO-30</td>
<td>35</td>
<td>8.2</td>
<td>0</td>
</tr>
</tbody>
</table>

* Mutants designation denotes ultraviolet irradiation (UV, 60 s exposure), ethidium bromide (EB, 10 μg/ml for 1 h), NTG (100 μg/ml for 30 min) and acridine orange (AO, 100 μg/ml for 30 min).
** Measured in free-living cultures grown on the LNB-5 medium. Other details are given in the legend to table 1.

GS I determines the degree of nitrogenase expression. Therefore, it seems possible to isolate a Rhizobium mutant constitutive in unadenyllylated GS I with a constitutive nitrogenase expression.

GS (gln A) is known to act as a positive control element in several nitrogen yielding operons. It has also been shown that the products of two more genes gln F (ntr A) and gln G (ntr C) are positive transcriptional activators in nif operon of K. pneumoniae.

The results (tables 1–3) suggest that in the systems studied, the role of GS II may not be unequivocal in purine biosynthesis as proposed by Ludwig. If this is assumed to be true then the availability of adenine would determine the E of GS I and this in turn should correspond to the levels of % GS II. However, in no case has this been observed by us (tables 1–3), and hence it is possible that GS II may not be involved in purine biosynthesis but it might have a role as an ammonia assimilatory enzyme. Thus, unlike that of unadenyllylated GS I, the role of GS II either in adenyllylation of GS I or in ammonia assimilation is yet to be resolved.

ACKNOWLEDGEMENTS

This work was supported by grants from the Indian Council of Agricultural Research, New Delhi.

17 May 1985