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ABSTRACT

The development of information theory and entropy has been traced from the time of
Boltzmann to the present. Various forms of the information entropy functional have been
scrutinized and the maximum entropy principle of Jaynes has been discussed. The
problem of reconstructing probability distnbutions using moments of various orders has
been examined in the hight of the works of Dowson, Wragg and Einbu. A practical
reconstruction of electron momentum densities by employing the first- and second
moment constraints by Sears, Gadre and Koga has also been presented. Various
aspects of information entropy encompassing kinetic energy functional, reaction dy-
namics, Loges, surprisal analysis have been discussed. The outstanding contribution of
Bialynicki-Birula and Mycielski, giving the entropy sum in dual spaces the meaning of an
uncertainty relation, has also been presented. The problem of characterizing the quality of
atomic and molecular wavefunctions has been considered in the light of information
entropies. A new entropy maximization principle for S, + S, has been postulated and
some of its applications 1n judging wavefunction quality and refinement of density
distributions have also been presented in detail.
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HISTORICAL PREVIEW!

A(‘CORDING to the first and second laws of
thermodynamics, entropy is a state function
of a system. This function was used to identify a
vanishing path integral in the theory of genera-
hised Carnot cycles,

dqg/T > 0 (1)
where
dS = dq/T, (2)

S 1s the entropy; dg is a differential of heat;and T,
the temperature. Equation (1) is also a statement
of the second law of thermodynamics. The next
major advance in the development in the concept
of entropy was due to Boltzmann, through his
famous measure of statistical entropy,

S=klnW, (3)

where k 1s Boltzmann’s constant. For the case
where all the energy levels are nondegenerate,

S = -—LNZp,lnp, where p, = N, /N, the

frequency of finding a particle in the ith energy
level. Later Gibbs introduced the idea of an

ensemble of systems, leading to an expression
identical to that of Boltzmann,

5 = —-Zpl]npl (4)

however Boltzmann’s p,s are single particle prob-
abilities. These statistical concepts of entropy
were utilized by Shannon? in laying the found-
ation of information theory. Following Gibbs
and preceeding Shannon, several important ad-
vances In the development of the statistical
entropy concept were made. Fischer® introduced
a new measure of information in the context of
statistical estimation theory. The pioneering
work 1n information theory was carried out by
Shannon, who in 1948, proved the basic theorems
of this new field of statistical mathematics.
Shannon’s accomplishments lay in the revelation
of the universality of the entropy functional (4),

— p.In p,, which may be said to represent the

entropy of any probability distribution, It was
this realization that prompted Jaynes* ® to pos-
tulate his principle of entropy maximization.
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SHANNON'S INFORMATION ENTROPY
FUNCTIONAL

Shannon’s solution 10 the problem of obtain-
Ing a quantitative measure of uncertainty or
entropy 15 axiomatic. For a statement of
Shannon’s axioms we will adopt the following
notations and conditions:

(1) S(p) 1s the average uncertainty of the prob-
abilny distribution,

p = (p1,P2,...), corresponding to the N el-
. ement event space X = (xg, x,. . .).

(2) p; =0 foralliand » p =1 (5)

Shannon’s entropy has been characterized by
different axioms by various workers in the field.
We state these axioms below:

(1) Continuity: S(p)isacontinuous function of p.
(2) For a uniform probability distribution with
N outcomes, S{p) is a monotonically increasing
function of N, the number of outcomes i.e.

S(I/N ... 1/N)>S(I/(N+1), ... 1/(N+1)).
(6)

(3) Recursivity: If a choice can be broken down
Into two successive choices then the original
entropy should be the weighted sum of the
individual entropics

S(pl* v« 3 Pm—15 pmqf v 8 F pmqn—m+l)

= S(Pl C p,,,)+P,,,'S(q1 ¢ o qn-m+1) (7)
where
” A—m+ 1
o1 wd 3 a-1  ®

i

(4) Normalization: 5(0.5, 0.5) = 1
(5) S(p) = AS(p), where 4 is a permutation
operator which arbitrarily scrambles the order of
the probabilities. This symmetry axiom states
that the uncertainty does not depend on the order
in which the outcomes are presented.

The only functional form obeying the above
axioms 1s

= -—kZp,lnpi (9)

The five properties above uniquely character-
1se the uncertainty measure in (10). Various other

characterisation measures [ead to the same logar-
ithmic measure in (9).

Generalization of the above discussion of
discrete probability distributions to continuous
ones has caused difficulty. The problem arose due
to the deceptively simple assumption by

Shannon?,

-y p,Inp, > -—jp(x) Inp(x)dx, (10

for the transition from the discrete to continuous
probabilities.

It was noticed that the form of continuous
probability distribution is not invariant to a
transformation of variable, i.e. the numerical
value of entropy depends upon the co-ordinate
system used. The lack of invariance is easily
demonstrated:

If y = g(x), where x is the variable, then the
transformation of probability density is

g(y) = p(x)(dg/dx)"' = p[g ™' ()] J (x/y)
(11}

where g(y) = x 1s the unique inverse relation
between x and y and J(x/y) is the Jacobian. Thus,

S[a(»]) = =y In{p(x)J(x/y)]}dx (12)
= S[p(x)] = [p(x)In[J(x/y)]dx (13)

the last integral in (13) is generally non-zero, thus
S{q(y)] differs from S[p(x)]. This invariance
problem was addressed by Jaynes’ who intro-
duced a measure function, m(x) such that

Slp(x)] = —§ p(x) In[ p(x)/m(x)]dx (14}

and sinc¢ p(x) and m(x) transform in the same
way, the Jacobian term vanishes in (13). This is
justified in being a necessary step in the proper
description of continuous entropy; m(x)and x are
related in the sense that if x is the natural variable
then m(x) 1s simply a unit bearing constant,

MAXIMUM ENTROPY PRINCIPLE

Jaynes’ maximum entropy principle (MEP) may
be paraphrased well in the words of Hobson®,

Given data D = (d,,d,,...) for a certamn
experiment, the probability distribution p
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= (P1» P2« -+ ) Which describes D must maxi-
mize the entropy expression S = —)Y p,Inp,,

with respect to all p satisfying D. If there are more
than one probability distribution satisfying the
constraints imposed by the data, then the single
probability distmibution having the greatest value
of S will be the ‘proper’ one to select. Thus the
maihematical description of information is inex-
tricably connected with missing information,
therefore uncertainty and entropy.

The mep of Jaynes’ has been used in literature
for reconstruction of a probability distribution
with the knowledge of some of its moments.
Dowson and Wragg® investigated this mep for
approximating an absolutely continuous one-
dimensional distribution with the knowledge of
the first and second moments. Their investigation
reveals the form for the density function of a
distnbution to be:

p(x) = exp(— )3 »LX"), (15)
r=0

where A, r=20,1,...m are chosen to satisfy

moment constraints of the form:

b m
H,.=J' x"exp(“ 2 lrx')dx;n=0,l,...m,
a r=90
(16)

with g, = 1. The validity of this result has been
exhaustively dealt with and the existence of a
solution to the above equation is considered for
cases of p. Further they have proved that a unique
solution to this equation exists for the case m = 2
only the relation

Hy < 2 pi. (17)

For a range [0, oc) and no solution can exist for
the case where

py > 2 p3. (18)

Another interesting aspect studied is the limit-
ing behaviour of maximum entropy distributions
on {0, R]as R - o, where they have shown that
these distributions do not converge to a imiting
distribution, which however 1s not a maximum

entropy distribution because convergence of the
moments breaks down.

This work has been further extended by
Einbu® to problems having more than two
moment constraints. Also lower bounds for even
order moments have been proven as a theorem:

If

N-=-1
exp(—— > x-f).j),with N =2i
J1=1

is the maximum-entropy distribution for the
moments Uy, . . . iy _,, then maximum entropy-
distributions exist for the moments yg, ... u,
only if gy = py, > 3, min» Where py; - is de-
fined by

| TSN 7 N 1D O SRR T A o

Hila ... Hyfhy o ..
ﬂZI.mm='—:12 ,:12

oo o0 | [ Moy« e By,

(19)

The uniqueness of the solution of the moment
problem has also been discussed in detail where
they have proved that if a maximum entropy
distnibution exists for a given moment vector,
then that distribution in unique.

An important aspect of the generalization of
Shannon’s entropy which, in the continuous case
1s invariant to ¢o-ordinate transformation, is the
discrimination information or Kullback-Liebler
information’®, defined as;

S[Pl/PO] = "ZPulnPu/PO (20)

and 1n the continuous case as:

S[pi/pe) = — [ p1(x) In[p,(x)/pqe(x) ] dx
(21)

where p,(x) and p(x) are normalised probability
density functions in the continuous case.
Kullback has described S{p,/p,] as the mean
information per observation for discrimination
of p;(x) over py(x) and is known as cross
entropy. From an application point of view an
important consideration is the minimum entropy
deficiency, which states that given the expectation
values of several operators F,(x) and the
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information:

[ p(x)F

and

(x)dx = {(F,(x}> (i=1,...n)(22)

) p(x)dx = 1. (23)

From an experiment, then the asimilation of this
information in an unbiased manner is possible by
Jaynes’ principle of entropy maximization or the
minimum entropy deficiency, subject to the given
constraints:

5{ [ pO) In{px)/po(x)] +

N
;0 A (FI(X)>} =0, (24)

where 4, are the lagrange multipliers. The sol-
ution 1s

N
p(x) = po(x) EXP[—- - Zl A, F, (x)] (25)

thus

SIp/pe) = —do— ) ACF () (26)

i=1

and the “surprisal’ of the distribution ts given by

N
I{p/po) = }:0 AF,(x) (27)
=
An important observation here is that the sur-
prisal (27) immediately identifies the constraints
used in minimum entropy deficiency procedure,
the implication being that one can determine the
operators important in reconstructing the distri-
bution, by inspection of a surprisal plot. With this
introduction to information theory entropy and
its properties we shall now survey some of its
applications to chemical physics.

APPLICATIONS OF INFORMATION
ENTROPIES IN CHEMICAL PHYSICS

One of the applications has been to the
problems” of chemical kinetics. Levine and
Bernstein'! pioneered the application of infor-
mation theory using surprisal analysis. Here
information theory approach has been used to

i

describe non-equilibrium situations. As an exam-
ple consider a diatomic reactive collision:

A+B--C4+D. (28)

The products vibrational state distribution p(v, ¢)
{where v1s the vibrational quantum number and ¢
the time), 1s of interest and is experimentally
monitored. The tool for analysis here is the
surprisal:

Hv, ) = —In{ply, 1)/po(v) ], (29)

the reference distribution is often taken to be the
equilibrium distribution ie. p(v,t = o), Thus
surprisal analysis offers a clear compact represen-
tation of non-equilibrium distributions. The time
evolution of p(v, t) is also attractively depicted as
a function of the number of constraints active
during the relaxation process.

An teresting concept using information en-
tropy ideas 1s that of ‘loge’. Daudel and co-
workers'? introduced this concept to quantum
chemistry. A loge 1s a region of space in an atomic
or molecular system in which there is a high
probability of finding a given number of
¢lectrons.

The probability of finding n and only n elec-
trons in a region of space €, 1s given by

r=( ) j R N 2

dr,,, .. dry (30)

‘Events’ are defined as assignments of a given
number of electrons to the loges of a system.
Originally the ‘best’ loges of a given system were
identified by considering one of the events and
allowing the other loges to relax until the prob-
ability of that particular partition is maximum. In
systems where more than one event 15 equally
probable the problem becomes severe, To over-
come this Aslangul'® suggested the use of
Shannon’s missing information measure

S(p)=~ Y. plop, (31)

i =1

where m 1s the number of events as & means of
accounting for all the events in a particular loge
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partitioning, The best loge partitioning 1s defined
as that division of physical space which gives the
lonest value to the missing nformation
functional,

In recent years, the increasing use of density
matrices and density functional theories of elec-
tronic structure, has focussed attention on the
electron density function and the one-matrix.
Information theory provides particularly useful
tools for the analysis of these functions. We
present below some of these features.

The electron density 1s defined in the atomic or

molecular case as:

Pos =NJ¢*(],...NW(1,...N) dr, ... dr,,
(32)

where ¥ (1, ... N)is a many-particle wavefunc-
tion. The surprisal in this case is defined as

I[p/po]l = —In[p/po); (33)

where pg is the arbitrary prior density. For the
case where p, = 1 for a reference density the
surprisal becomes

I[p/1] = —Inp. (34)

Wang and Parr'4 also carried out compu-
tations on HF densities, plotting surprisal in r over
the core and valence regions, suggesting a double
exponential model for second row atoms and
also revealing the constraints necessary for a
surprisal synthesis construction of density. This
also reveals that a great deal of electronic infor-
mation is contained in the first moment of the
distribution.

Gadre and Sears'® and Sears and Gadre!®
employed the information theoretic technique of
entropy maximization to Compton profile (cp)
data, employing single and double distribution
moments as constraints. The CP’s reconstructed
by employing {p> as well as {p*) constraints
agree fairly well with their theoretical counter-
parts. Koga'’ extended this analysis to the case of
molecular hydrogen at various internuclear dist-
ances. Sears et al'® examined the connection
between the kinetic energy functional and infor-
mation measures like Shannon entropy, Fischer’s

information and locality information matrix, and
Kullback and Leibler’s information measure.

UNCERTAINTY RELATIONS FOR
INFORMATION ENTROPY

Bialynicki-Birula and Mycielski'® presented
new uncertainty relations in quantum mechanics
using canonically conjugate variables in terms of
corresponding information entropies. The new
uncertainty relation has the form;

~n|y@[*) —<In|¢(p)|*> 2 n(l +1nn),
(36)

where [y(r)|? and |¢(p)|? are probability densit-
ics in n-dimensional position and momentum
space, noting that the wavefunctions generating
these distribution are related by a Fourier trans-
form relationship. The two terms appearing on
the left side of the above inequality represent
information entropies. Each entropy taken sep-
arately decreases without bound when the cor-
responding probability density becomes more
concentrated, i.e. information increases. The
boundedness from below of the sum of two
entropies means that the total uncertainty in
positions and momenta cannot be decreased
beyond the value given in the inequality above.
On further reduction, the above bound reduces
to

S,+S,23N(I+lnm)—2NInN. (37)

Gadre?? has tested this interesting new un-
certainty relation by Bialynicki-Birula and
Mycielski'® within the Thomas-Fermi frame-
work and has obtained the following expressions
for Shannon entropies: S, = N(5.59 =2InN);
S, =N{1.06+InN) and §,48, =N(6.65
—In N). He further conjectured that for atoms in
their ground states, the entropies can be fairly
well-represented by the form

S=aN+bNInN, (38)

where ¢ and b are more or less universal const-
ants. The NHF entropies fitted to this form?'
are given by: S, +S, = N(6.257-0.933 In N);
S,=N@.171 —1.715InN) and §, = N(2.086
+ 0.784 In N).
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RECENT WORKS INVOLVING INFORMATION
ENTROPIES IN DUAL SPACES

A detailed study of the application of the
bound due to Bialynicki-Birula and Mycielski
has been carried out by the authors several
interesting results from which are presented
below.

Some model systems such as the harmonic
oscillator were examined?!. The Shannon en-
tropies and their sum for the harmonic oscillator
increases with increasing quantum number n. For
the hydrogen atom, the co-ordinate space infor-
mation entropy S, is a minimum for the ground
state and increases monotonically with the ex-
cited state energies, whereas the momentum
space entropy S, decreases monotonically.
Investigations on S, and S, for atoms helium
through xenon in their ground states were also
carried out and are presented pictorially in
figure 1. The general trends show that 5, de-
creases and S, increases with increasing Z.
Notable exceptions occur around fully-filled
shells such as neon. A further application is the
use of the entropy sum §, + 5, as a measure of
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Figure 1. A plot of near-Hartree-Fock information
entropies for neutral atoms with 2 < N < 54

-

wavefunction quality. For this purpose wavefun-
ctions of single-zeta (sz), double zeta {Dz) and
near Hartree-Fock (NHF) quality were employed.
Atomic information entropies for some ran-
domly selected atoms are presented in table 1. In
particular §,+ S, increases with increasing
quality wavefunction (ones that give better
atomic properties). Another point in favour of
the entropy sum S8, + S, is 1ts scale 1nvariance,
which cannot be said about i1ts components §,
and §, individually.

Maroulis et al*? investigated the use of infor-
mation theory for molecular properties and basis
set quality. Here they have used information
content with respect 1o various properties of a
system, They have also formulated a procedure
for construction of basis sets using information
content. Simas et al*? computed basis set quality
for the hehum atom using the procedure by
Maroulis et al. This approach, however,demands
the knowledge of exact expectation values, which
are not easily obtainable for larger atoms.

Gadre and Bendale?# have also studied the
problem of wavefunction quality for the case of
helium atom using Shannon information en-
tropies S,, S, and their sum S, + S,. The wave-
functions studied ranged from sz to NHF and i
quality, such as the ones by Taylor-Parr. The
investigation revealed that the quantities S, and
S,+ S, increase monotonically with increasing
kinetic energy. The quantity S, however steadily
decreases. Gadre and Bendale®® extended the
MEP of Jaynes to the case involving constraints in
complementary spaces. Conventionally, Mep is
applied for the case of constructing the prob-
ability density in one space alone (subject to
whatever is known). However, while applying the
procedure to atomic systems, ong should not
ignore the deep-rooted physical reality, tiz the
Fourier transform (r7) relationship between the
r- and p- spaces leading to complementary nature
of the respective electron densities, Thus an
enhancement in the information entropy in one
space alone does not assure a gamn in the com-
bined information entropy, S, + .. Thus Mt e has
to be modified when combined sets of con-
straints, {S,} and {S,} arc available in - and p-
spaces respectively, The modified myp (Mmmee)
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Table } Shannon entropies®, 3, S, and thetr sum S o, + S, for some representative neutral aioms in thewr ground states computed
from Near Hartree-Fock gquality waiefunctions

el Sl e el o

— il W

NHF DZ SZ
Atom S, S,  S,+8, S, S, S, +5, S, S, S,+8,
Be 895 i122 20.17 895 11.21 20.15 8 89 ii.24 20.13
Ne ~ 247 41 35 38 87 - 2.62 41.38 38.73 —4 67 4243 37.76
P — 3524 62.11 56 87 —3.59 62.11 56.86 —-661 6309 56 47
Zn ~33.35 144 3 90 98 - 35.74 1463 90 60 ~60.15 148 4 88.26
— 1433 279.2 135.9 — 146 4 281.5 135.2

Xe —~ 1433 279.2 136.0

e e

* All values in a.u. Evaluated from near Hartree-Fock (NRF), double-zeta (DZ) and single-zeta (SZ) wavefunctions of E.
Clementi and €. Roetu, At. Data Nucl. Data Tables 28 (1974) 477,

that emerges from these considerations may be
stated as follows. The probability densities p(r)
and y(p) (which are connected through rr of the
corresponding wavefunctions) and are subject to
{D,}and {D,} must maximize the sum §,+§_. It
is interesting to note*® that the scaling of wave-
function in the r-space by a factor k leads to
scaled entropies: S, =S, —-3NInkand §, = h
+ 3N Ink. Thus the sum of the entropies S, + S,
can be seen to be invariant to scaling,

The above considerations enable one to syn-
thesize p(7) and y(p) by considering the com-
posite entropy maximization procedure. This
synthesis may be eflected by a suitable choice of
variational forms for y(r, . .. r,) incorporating
various parameters and obtaining its FT,
¢{p1 . - . py) then computing and maximizing S,
+§,. The variational forms can be forced to
show the proper asymptotic behaviour,2® viz
r' exp (=2./21 r)and p~% where?” I is the first
ionization potential. A proper cusp can be forced
by imposing Kato’s theorem,

dp/dr|,_q = =2Z p(0) (39)

Another experimental constraint available in
p-space is the (p*> value. Thus it should be
interesting to synthesize electron densities in co-
ordinate and momentum spaces using the above
mentioned constraints,

A further application by Gadre et al*? is the
refinement of a given momentum distribution
using nove} information theoretic techniques, In
a practical implementation of this method, an
approximate electron density 1s obtained from

knowledge of the momentum density only with-
out any a-priori knowledge of the wavefunction
1self. By constraining a refined density y(p) to
differ minimally from the original one y,(p) one
obtains an expression for the momentum density
as:

Y(P) = 7o (p) + v6(p) (A + up?), (40)

where k 1s a parameter and 4 and u are Lagrange
multipliers. Various values of k were employed
and the Shannon entropies evaluated for both co-
ordinate and momentum densities; it turns out
that for k = 1.25 the entropy sum S, +8§, is a
maximum. It should be noted that k cannot be
less than 1.25 to ensure the p~ ® asymptotic decay.
The Compton profile generated with k = 1.25
compares remarkably well with the experimental
one. Thus it 1s clearly demonstrated that in Mep
the key quantity for atomic and molecular sys-
tems is the net information content S, + S, and
not the individual entropies themselves.
Recently, significant advances have been made
in the density-based approaches?® to atoms and
molecules. It may thus be hoped that the newer
developments in Information entropies would
open many new avenues for synthesis and analy-
sts of atomic and molecular electron densities.
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The Sabha is actively engaged in creating public
awareness in environmental issues facing the country.
The Sabha is planning to organise a national level
competition in September 1986, wherein certificates
and cash pnzes will be awarded 10 those who have
done commendable work in arcas of wildlife protec-
tion, plantation, development of habitats and such

assoctated fields.

Nominations for the awards are invited before 1Sth
November 1985,

Further particulars may be had from Shri Purkha
Ram Vishnoi, Secretary, Akhil Bhartiya Jeevraksha
Vishnoi Sabha, 1 Cha 6, Madhuban Nagar, Basan
Housing Board, Jodhpur 342005,




