SIGNIFICANCE OF ATOMIC AND GRAVITATIONAL CLOCKS IN SCALE-COVARIANT THEORY

RAMESH CHANDRA
Department of Mathematics, St. Andrew's College, Gorakhpur 273001, India.

ABSTRACT

A theoretical method for the determination of the unknown scale function within the scale-covariant theory with the help of atomic and gravitational clocks has been proposed.

Bohr and Rosenfeld argued that a physical theory provides its own unit of measurement. Later Eddington and Dirac supported this argument to explain dimensionless large numbers constructed with the help of the constants of nature. Recently, Dirac, Canuto et al. and Rosen proposed scale-covariant theory on this basis.

According to Dirac, there are two types of units in nature: atomic unit and gravitational unit. The atomic unit is constructed from the constants of atomic physics and the gravitational unit is constructed from the constants of gravitational physics. The constants of atomic physics are the Planck constant, the speed of light c, the electron charge e, and the masses of microscopic particles and the constants of gravitational physics are the constant of gravitation G, the speed of light c, and the masses of macroscopic objects.

Dirac proposed that the metrics ds_A and ds_G of the space-time measured in atomic and gravitational units, respectively, are related by

$$ds_G = \beta ds_A,$$

where β is a dimensionless, positive and real function of space-time. It is known as a scale function. The metric ds_G behaves like a Riemannian space-time for gravitational physics, whereas, for atomic physics, it behaves like an integrable Weyl space-time. The metric ds_A behaves like a Riemannian space-time for atomic physics, whereas, for gravitational physics, it behaves like an integrable Weyl space-time. The formulation of physical laws in space-time with consideration of the structures of space-time corresponding to atomic and gravitational physics gives rise to the scale-covariant theory.

A serious drawback of the scale-covariant theory at least for the study of the gravitational physics in atomic unit is the unknown scale function β. It is due to the fact that the formulation of a physical law in an integrable Weyl space-time is covariant under the Weyl gauge transformation of the form

$$ds' = \beta ds$$

and hence, we may not have a field equation for β, just as we do not have field equation for coordinate systems. This is the reason that Dirac, Canuto et al. and Rosen have proposed some other means outside the scale-covariant theory to determine the function β. Different consideration such as variable G, large number hypothesis etc give rise to different types of variation of the function β. Therefore, it becomes natural to find out a method to single out a variation of β out of all possible variation of β obtained from different considerations. An experiment has been performed with the Viking satellite in this direction and the experimental result is still under examination.

In the present paper we propose a theoretical method to determine the scale function within the scale-covariant theory and independent of any other related concepts.

In the scale-covariant theory the mass M_G of a macroscopic object in gravitational unit is a constant and the mass M_A of the macroscopic object in atomic unit is variable according to the relation

$$M_G \beta = M_A.$$

A similar relation is true for the atomic mass m_A and gravitational mass m_G of a microscopic particle, that is,

$$m_G \beta = m_A$$

but, the mass M_A is constant and the mass m_G is variable.

As pointed out earlier the formulation of a physical law in an integrable Weyl space-time is covariant under the coordinate transformation as well as under a transformation of the form (2). Therefore, the equations governing the physical law provide the measurement of Weyl gauge invariant quantities only in the Weyl space-time. A quantity T (scalar, vector, tensor or spinor) is said to be Weyl gauge invariant if it
transforms as
\[T' = T \] (5)
under the transformation (2). Since, in a Riemannian space-time, the formulation of a physical law is covariant under the coordinate transformation only, the equations governing a physical law provide the measurement of those quantities which are invariant under the coordinate transformations in the Riemannian space-time. Therefore, the electron mass \(m_e \), in atomic unit and the metric \(ds_G \) of the space-time in gravitational unit are measurable quantities. The metric \(ds_G \) may be measured according to the method of Marzke and Wheeler \(^7\) or according to the method of Kundt and Hoffmann \(^8\).

Let us construct atomic clocks via the atomic transitions of hydrogen atom in gravitational units. For this we need the formulation of the Dirac field in gravitational units. Following Lord \(^9\), the Lagrangian density for the Dirac field in gravitational units (in integrable Weyl space-time) is given by
\[
2L = (-g)^{1/2} \left[-i \not\! \psi_G \gamma^\mu \psi_G \right] - m_e \not\! \nabla \psi_G + 2e \not\! \psi_G \gamma^\mu A_\mu \psi_G \right] \] (6)
where for simplicity we have taken the speed of light and the planck constant as unity. \(-g \) is the determinant of the metric tensor corresponding to the metric \(ds_G \), \(\psi_G \) and \(\bar{\psi}_G \) are the four-spinor and its conjugate, respectively. \(\gamma^\mu \) the Dirac matrices, \(m_e \) the electron mass, the symbol \(\not\! \psi \) denotes the Weyl covariant derivative and \(A_\mu \) the electromagnetic potential. The quantities \(\psi_G, \bar{\psi}_G, \gamma^\mu, m_e \) are related to their corresponding quantities in atomic unit as follows:
\[
\psi_G = \beta^{-2} \not\! \psi_A, \quad \bar{\psi}_G = \beta^{-3/2} \bar{\psi}_A
\]
\[
\gamma^\mu = \beta^{-1} \gamma^\mu, \quad m_e = \beta^{-1} m_e \] (7)
and the quantities \(e \) and \(A_\mu \) are the same as the corresponding quantities in atomic units because of their Weyl gauge invariant nature in gravitational unit. The Dirac field equation in gravitational unit is then derived from the Lagrangian density (6) under the condition
\[
\delta L / \delta \bar{\psi}_G = 0 \] (8)
as
\[
i \gamma^\mu \psi_G - e \gamma^\mu A_\mu - m_e \psi_G = 0. \] (9)

It may not be possible to obtain general expression for the energy-separations in an arbitrary space-time. As a suitable example we consider spherically symmetric space-time, whose metric is given by
\[ds_G^2 = T \, dt^2 - H(dx^2 + dy^2 + dz^2), \] (10)
where \(T \) and \(H \) are space-time functions.

We consider a hydrogen atom static for a moment in the space-time (10) and assume that the region in which the electron moves around the nucleus during the transition period, is very small and therefore, for the determination of the energy-separation \(T, H \) and \(m_e \) can be treated as constants.

There are three types of transitions of hydrogen: (i) between principal levels, (ii) between fine-structure levels within a principal level, and (iii) between hyperfine levels. Following Will \(^1^0\), the energy separations \(\Delta E_p, \Delta E_f \) and \(\Delta E_H \) corresponding to the three types of transitions, respectively, are given by
\[
\Delta E_p = -\frac{1}{2} m_e \varepsilon T^{1/2} \Delta \left(\frac{1}{n^2} \right) \] (11)
\[
\Delta E_f = -\frac{1}{2} m_e \varepsilon T^{1/2} \Delta \left(\frac{1}{j+\frac{1}{2}} \right), \] (12)
and
\[
\Delta E_H = \frac{4\pi}{3} \frac{m_e^2 \varepsilon^2}{M_{PG}} T^{1/2} \delta p < 0 | \gamma_p - \gamma_p | 0 > . \] (13)
where \(n \) is the principal quantum number, \(j \) the angular momentum quantum number, \(\varepsilon_p \) the gyromagnetic ratio, \(\gamma_p \) and \(\gamma_p \) the spin of the electron and proton, respectively, \(M_{PG} \) the proton mass, in gravitational unit. The quantities \(n, \varepsilon_p, \gamma_p \) and \(\gamma_p \) are the same as their corresponding values in atomic unit, because of their Weyl gauge invariant nature in gravitational unit and \(M_{PG} \) is related with the corresponding quantity \(m_e \) in atomic unit according to the relation (4) as
\[
M_{PG} \beta = M_{PA}. \] (14)

From (11), (12) and (13) it may be seen that the atomic clocks constructed via any of the types of atomic transitions measure the Weyl gauge invariant quantity \(m_e T^{1/2} \) in gravitational unit. Furthermore, the hydrogen atom has been assumed static during the transition period, therefore, in general, an atomic clock would measure \(m_e ds_G \).

Thus, we have three measurable quantities \(m_e \), \(ds_G \) and \(m_e ds_G \) in the scale-covariant theory, from which we may construct the quantity \(m_e ds_G / m_e ds_G \), and in view of (4), we have
\[
\beta = m_e ds_G / m_e ds_G. \] (15)
This shows that we may determine the scale function \(\beta \) within the scale-covariant theory and without any
other consideration from outside the theory.
The author is thankful to Prof. J. Adretsch, Konstanz University, West Germany, Prof. V. Canuto, NASA Goddard Space Flight Center, U.S.A. and Prof. N. Rosen, Technion-Israel Institute of Technology, Haifa, Israel for their valuable discussions.

26 April 1985

NEWS

THE SUPERNova MAN

... "Searching from his backyard, Robert Evans discovers supernovae [the distant nuclear explosions of collapsed stars] by coupling a small telescope with a keen eye and a mental map of hundreds of galaxies. ... On clear nights, Evans aims his home-built telescope skyward and scans nearby galaxies for a discrepant dot of light. Several times a year he finds one. 'He's absolutely unbelievable," says Gerard de Vaucouleurs [U. Texas]. 'His is] a rate of detection that has never been achieved by anyone else, and it shows that there are a lot of supernovae that we are missing'. ... Over the years, Evans has gained familiarity with more than 700 galaxies, each mentally catalogued with its distinctive surrounding stars. No other person can claim such a vast mental storehouse of familiar galaxies, yet Evans modestly likens his talent to remembering a person's face. ... Using Milky Way stars as guideposts, he hops from one fuzzy patch to the next at the rate — on good nights — of one per minute. With such speed, Evans can sift through as many as 500 galaxies in a session, dramatically boosting his chances of spotting a supernova. ... Evans has made 10 discoveries — eight in the last two years — and four times he spotted the supernova before it had reached its maximum brightness, testimony to his diligence."

[(John R. Gustafson in Science 85 6(3):78, 80, 82, Apr 85) (Reproduced with permission from Press Digest, Current Contents®, No. 20, May 20, 1985, p. 15. Published by the Institute for Scientific Information®, Philadelphia, PA, USA.)]