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PHYSICS AT PLANCK LENGTH
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ABSTRACT

Quantum gravitational effects alter the nature of spacetime at length scales of the order
of Planck length ( ~ 10722 cm). These effects can be investigated by concentrating one’s
attention on the conformal degree of freedom of the metric. It can be shown that
physically measurable proper interval between any two events, in any spacetime, is
bounded from below by Planck length. Quantum gravity shows promise in providing a

universal ultraviolet cut-off.

GRAVITY—CLASSICAL AND QUANTUM

LL known gravitational phenomena are de-
A scribed by Einstein’s general theory of rela-
tivity, which interprets gravitation as an effect
due to curvature of specetime manifold.
Accordingly, the central quantity in the theory is
the spacetime interval between two infinitesim-
ally separated events:

ds® = g, (x)dx"dx*, {H

The metric tensor g,, (x) which appears in (1) is
determined by the distribution of matter through
Einstein’s field equations:

Ri—18;R = -8nGT:. (2)

The description (1) and (2) is purely classical.
We assume that by setting up co-ordinate sys-
tems (involving rods and clocks) in a suitable
manner one can determine the value of g, at any
point to arbitrarily high degree of accuracy. Such
a tacit assumption, always made in a classical
theory has the following immediate consequence:
As dx' goes to zero, ds? will go to zero. In
particular consider two events (¢, x) and (¢, y)ina
given spacelike hypersurface labelled by a time
coordinate t. As x approaches y the proper
distance between these two events will approach
zero. This trivial fact can be stated formally as,

im (ds? = g,dx'dx*) = Q, 3)

.Ii‘-l'_vl

where ' = x'+dx’. Note that -classically
measured g, (x) does not affect the limiting
process in any way.

Classical gravity, however, does not exist
€xcept as an approximation. It is necessary to
take mmto account the guantum nature of the
world by quantising gravity. Such an endeavour
1s fraught with difficulties because of two reasons:
(1) Einstein’s gravity is a nonlinear theory and
leads to serious mathematical complexities when
quantised (n) The close laison between gravity
and spacetime creates new conceptual difficulties
which have no parallel in any other field theory.

Fortunately, quantum gravitational effects
are not relevent except at very small length scales.
One may estimate this scale by comparing the

Einstein action,
|

— Y
5 lﬁnGIRJ gd®x (4)

with the quantum of action £. It is easy to see that
quantum gravitational effects are important at
length scales of the order of “Planck length™, L :

4 1/2
L, =( J::_?H) ~ 10732 cm. (5)

In other words, when the proper distance be-
tween two events 1s less than L,, the classical
description presented above will break down.
Quantum fluctuations in the metric tensor will be
enormous and one can no longer treat g, (x) as
classically specified function. How can we de-
scribe physics under such bizzare conditions?

A partial—but extremely useful-——answer to the
above question came from a class of quantum
cosmological models' 3. These models, in which
the conformal degree of freedom of the metric
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was quantised, showed that the universe did not
proceed below Planck size in its proper dimen-
stons. We shall now examine this situation in
detail, to see the relevence of quantum conformal
fluctuations (Qcr) to the physics at Planck length.

QUANTUM FLUCTUATIONS AND GROUND
STATE

An electron located within a sphere of radius
Ar around a proton will have an energy of the
order of,

_(Ap} ¢ f q°

b 2m _m=2m(ﬁr)2 (Ar)

(6)

The first term, which is entirely due to quantum
fluctuations, prevents Ar from becoming zero.
The minimum energy (ground) state occurs at the
Bohr radius,

Ar =ro = —. (7)

The physics of Robertson-Walker universe is
similar. A radiation filled, k = 1, classical uni-
verse 18 described by the line element,

dr?
1 —kr?

ds? = g?sin? wtl}::l!:2 —
—r?(d6? + sin? Qd(pz)]. (8)

The quantum universe, on the other hand, is not
described by such a singular, deterministic line
element; it is represented by a series of (quantum)
stationary geometries*™® (QsG, for short) para-
metrized by an integer n: In the nth stationary
geometry the line element has the form:
2

dsk, = Li(n «I-%)[dr‘E _dr -

|l —r

—rt{d0* + sin? Dd(pz)] (9)

(for more details, see ref. 4—6). In particular, the
“ground state” for the quantum universe has the
dimension ~ L, and proper volume ~ L3, The
basic reason for the existence of such a “ground
state™ Is again quantum fluctuations in the scale

factor. It can be shown that*~¢ if we write the
averaged scale factor for the quantum universe
as,

Q* () = Q3 [1+ A% ()]

(where Q5(t) is the classical scale factor) then,
L;
Qs(r)’
In other words the fluctuations A?(r), which

diverge at the classical singularity (Q,(t) = 0),
provide us with a stable ground state for the
universe, via the limit:

A%(t) ~ as 0, — O. (10)

lim Q*(t) = L2. (11)
Co—0
Clearly it 1s meaningless to talk about length
scales less than L in such a universe. (It would be
analogous to talking about energies below 1 i w
for an oscillator). Planck length appears as a
physical lowerbound to proper length.
Interestingly enough, such a result can be
proved in broad generality in any specetime. We
shall now examine this generalization.

VACCUM FLUCTUATIONS OF QUANTISED
GRAVITY

In the absence of gravitational field, the space-
time would be considered flat in the classical
limit. Such a flat spacetime should be more
properly treated as quantum gravitational
vacuum. The omni-present vacuum fluctuations
will now induce fluctuations in the classical value

of the metric tensor,
g% =n, =dia(l,-1,—1,~1). (12)

What are the physical effects of such metric
fluctuation?

To begin with, consider the proper length
between two events (¢, x)and (¢, y). In the absence
of metric fluctuations, the proper length is just,

i, y) = |x~yl. (13)

When the quantum conformal fluctuations of the
metric are taken 1into account, we have to deal
with all the metrics of the torm,



914

Current Science, September 20, 1985, Vol. 54, No. 18

L

A

gu = (1 + ¢(x)) *n,,. (14)

Since the proper distance between (r, x) and (¢, y)
depends on the value of the quantum variable
@ (x), we can no longer assign a unique proper
length between {t, x)and (¢, y). Instead, we should

ask for the probability P(l) for the proper length
to have a particular value I. This probability, in

turn, depends on the probability for a fluctuation
of size ¢(x) to occur, and can be computed by
vacuum functional techniques. One obtains the
distribution’

1
P[QS(X)] = NEXP{—4H2L2

faxd3y*7¢>(x)-?¢(y)} (15)

|x—y|?
using which one can compute P(/). The final
answer 15, (for details see ref. 8),

1 1/2 (I . {0)2
I ~—
P[l]d1 (211: O_Z) exp{ 522

with,

}dl;! > 0,
(16)

12 /L \2
52=1%(§;’). (17)

In (17}, L denotes the resolution limit of the
apparatus used to measure the proper length

between X and .
We note that P(/) is a Gaussian-peaked at the

classical value /,, as expected. As long as we
consider measurements which are ‘coarse-
grained’ over many Planck lengths (i.e. resolu-
tion limit L > L)), the quantum spread in the
(Gaussian is small:

1 (LY
Tg'_&r.:l(L) <1. (18)

In this limit (which is valid even at the highest
man-made accelerators), P({) is adequately ap-
proximated as a delta function &( —I;) and one
may neglect quantum gravitational effects. How-
ever as the resolution improves (ie. L= L)), o
approaches /,, and we lose the concept of a

definite length between the events.
The mean square value of /2 for the Gaussian

[ = ,x“)’k

distribution is given by,
LZ
<12> =13[1+4n212 ] (19)

From the definition of L as resolution limit, it
follows that |, 2 L. Taking the limits in proper
order (maintaining I, > L), we get,

L 2
lim { Iim (F)} —( ") . (20)
Loo i -2 P
In other words, the mean square proper length is

bounded from below at (L,/2n)*. The above
discussion once again illustrates how fluctuations
can lead to a stable lower bound in length scales.

Even though the intermediate steps involved
the resolution length L, the final bound did not.
This makes one suspect that it may be possible to
obtain the lower bound without bothering about
the measurement process. We shall now see how

this can be done.

THE ‘ZERO-POINT LENGTH' OF SPACETIME

Taking into account the conformal fluctu-
ations of the metric, one can try to define the
mean value of the spacetime interval at the
coincidence limit by the following relation:

lim <ds®) = lim {[1 +¢(x)]? D nadxidx*.
xX—y X =y
(21)

Such a definition however runs into two diffi-
culties immediately: (i) Mathematicalily, expres-
sions like {( $?(x) ) are divergent® and need to be
“regulanized” (it) Physically, line interval de-
pends on two events, x'and y' = x* +dx'and itis
not meaningful to consider ¢ at a signal event x*.

Fortunately, both these difficulties can be
surmounted by a small modification of our
definition. We shall consider {ds? ) to be defined

as the limit,
lim (ds?) = lim {1 + {$(x)¢(») > } nudx'dx".
X~y xX—=y (22)

Here and elsewhere the ‘mean values’ ( ) are
defined via functional integration. For example,



Current Science, September 20, 1985, Vol. 54, No. I8

915

_12¢ ¢(x)¢(y)expist /h

CBPU) == @)

where &7, given by (4), becomes a functional of
¢{x): (See, e.g. ref. 3).

1 .
A = Y% {o'd,d*x. (24)

Using (24), (23) and (22), we get, (with [} (x, y)
= ?hidxidxk),

lim {(ds*> = lim {¢(x)p(y) DI2(x, y)

y Xy

L \%1
— " -'—-p —_— 2
Iim (}E) B I5

X =y

_ (_L_a)z (25)
2n /]

In other words, the mean square value of the line
interval is bounded from below at (L, /2n)*. The
discussion in the previous section illustrates how
measurements respect this fact. In analogy with
the zero-point ¢nergy of the harmonic oscillator
we may attribute a “zero point length™ between
any two events 1n the spacetime. This result can
also be looked upon as an ‘uncertainly relation’
between proper length and the conformal factor.
We can interpret ¢ in (16) as the uncertainty Al in
the measurement of proper length. If A ¢ denotes
the uncertainty in the conformal factor then (17)
can be stated equivalently as,

AP Al (2%) (26)

All the previous results, especially those in quan-
tum cosmology, are consistent with this principle.

The result in (25) is valid in any spacetime.
Though the expectation value {(¢(x)¢(y) ) is a
complicated function of (x, y) in a general space-
time'®, the coincidence limit of (@ (x)d(y)) is
dominated by the flat space behaviour and
diverges as I5 %. Clearly, this feature is enough to
reproduce (25).

We shall now examine the physical consequ-
ences of this result.

GRAVITY AND ULTRAVIOLET
DIVERGENCES

It is well known that quantum field theory is
bedevilled by divergences when straightforward
perturbative techniques are used. Because of this
situation it is impossible to construct a quantum
theory from an arbitrary classical theory. Such a
helplessness has forced the physicist to reli-
giously adhere to a small subset of all possible
theories, in which the divergences can be sys-
tematically removed.

It has been repeatedly suggested in literature
(see ref. 11, 12) that gravity might provide a
universal cut-off required to remove the ultra-
violet divergences. Since a lower bound on length
scale is equivalent to an ultraviolet cut-off, our
result in the previous sections has important
bearings to field theory.

Consider, for example, the usual definition for
the two point Green’s function [for a sialar field

n{x)| via path integral
§2n(x)n(x)n(y)expist [n] 27

G X, = . 2
o(x.) [Dnexpisdn]
with, |
An]=1{nn'd*x. (28)

The above equations presuppose that the space-
time is flat (or, at least, g,, is fixed at some values).
Since such an assumption is incorrect at high
energies we should modify G,(x, y) in the follow-
ing way: Let G,(x. y: g.) denote the Green's
function when the spacetime metric i1s g,,. Then
the correct Green’s function i1s obtained by

averaging over various metrics with the proper
weightage exp i &/ (g,.):

Girue (%, ¥) = [ 29 Go(x, y;90)expiad[gul.
(29)

Performing this calculation (see ref. 9 for details)
we get the final answer as,

- el

1 1
= ~ " 3)
Glruc('xl}) 47[25{ , Lp 2 | } ( (.)
(x —y)° + T +ié

Note that G, . (x,¥) has finite coincidence limit as
x ~»y, in sharp contrast with G,(x, y). Ficld
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theory calculations using G, will be free from
coincidence limit divergences. For example, it has
been shown (inref. 13) that the one-loop effective
action i1s finite when gravitational effects are
taken 1nto aceount.

CONCLUSION

It was always hoped that Planck length will
play a crucial role in quantum gravity. Analysing
the conformal degree of freedom, one is led to
envisage a far more fundamental role to Planck
length. It provides a universal “lattice spacing”

for the spacetime,
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NEWS

FROM THE PASTURE TO THE HUMAN BODY

... “Collagen Corp. [Palo Alto, Calif] gets its
collagen [a wnnkle-smoothing substance that, when
injected under the skin, is accepted as part of the
body’s connective tissue] from cow hides and bones
and has been selling its products under a license
obtained from Stanford U. when the . . . company
was founded in 1975. Although collagen from all
animals 1s remarkably similar in molecular structure,
small differences cause rejection. Collagen Corp. pu-
rifies cow collagen by cleaving away the portions of the
molecules that are most different from their human
counterparts. The result of the more than 150,000
people who have received bovine collagen njections,
mamly under their facial skin, only 1.3, have had
adverse reactions—most of them no more serious than

an mflammation the size of a mosquite bite. . . . The
aim all along has been to use facial injections of bovine
collagen as a cash cow to expand into potentially
larger markets. Toward that end, Collagen has de-
veloped a variety of the protein in which the molecules
are cross-linked so that they more closely resemble the
structure of human collagen. The new substance stays
longer in the body; it can treat bigger scars and
blemishes than the existing varieties and should enable
the company to enter new areas of body repair.”

[(Gene Bylinsky in Fortune 1 Apr 85, p. 115-17)
(Reproduced with permission from Press Digest.
Current Contents® , No. 20, May 20, 1985, p. 14.
Published by the Institute for Scientific Infor-
mation® , Philadelphia, PA, USA..)]




