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ABSTRACT

A comprehensive analysis of theories of classical relativistic particles with internal structure,
based on group theoretic and differential geometric methods. is presented. The Lagrangian

formulation of dynamics is used.

INTRODUCTION

CLASSICAL relativistic particles with internal struc-
ture have been the subject of a considerable
amount of study recently. In addition to space-time
position x*, they possess a set of translationally invari-
ant internal variables ¢" which describe an internal
space @ admitting an action of the homogeneous
Lorentz group. Such classical indecomposable objects
can be viewed as a useful starting point for the
description of, and an approximation to, the concept of
Regge trajectories.

The Lagrangian approach to classical particles with
spin was pioneered very early by Frenkel'. A great deal
of work has been done since then by several authors. A
recent development of considerable significance is the
work of Hanson and Regge? on the relativistic sphe-
rical top, where systematic use was made of the
powerful methods of Dirac’s constrained Hamiltonian
dynamics. Somewhat simpler models with interesting
features were subsequently constructed by Mukunda et
al®.

I or several reasons the Lagrangian approach to
these problems i1s particularly attractive, in contrast
to an equations-of-motion method or a direct
Hamiltonian one. Both manifest covariance and the
existence of the conservation laws are easily ensured,
while possible couplings to external fields are also easily
analysed. Moreover, as exemplified by the work of
Hanson and Regge, the physical requirement of rep-
arametrization invariance of the action leads in a
natural way to a mass-spin trajectory condition arising
as a constraint in Dirac’s algorithm.

In this paper, we use group theoretic and differential
geometric methods to develop a systematic classifi-
cation and to analyse all possible internal structures for
classical relativistic particles. It is shown that this
problem is related to that of classifying all the essen-
tially distinct coset spaces of the group G = SL (2, C),
with respect to its continuous subgroups H. Methods

to determine the cases that allow non-trivial coupling
of the internal and space-time variables, and so permit
constructton of interesting Lagrangians, are also
outlined.

PHYSICAL REQUIREMENTS AND POSSIBLE
INTERNAL SPACES

For a structureless relativistic point particle, con-
figuration space coincides with Minkowski space-time
M with coordinates x*. The canonical formalism based
on the phase space 7* M uses the conjugate momen-
tum p, and the orbital angular momentum L, = x_p,
— x,p, as generators for the Poincaré group P, Absence
of internal structure is reflected in a vanishung Pauli-
Lubanski vector: W, = 3¢, ,p"L*" = Q.

To accommodate internal structure we need an
enlarged configuration space M x @ with Q the space
of internal variables ¢". Irreducibility or indecompos-
abulity of Q i1s expressed by the property that any two
points of O can be connected by some element of the
homogeneous Lorentz group SO(3,1). In order to
accommodate spinorial variables as well as with a view
towards eventual quantization we will use G
= SL (2, C) in place of SO(3,1). Thus G must act
transitively on Q. With respect to the development of a
canonical formalism starting from some Lagrangan,
two qualitatively different possibilities arise depending
on the nature of Q. In case @ supports a G-1nvariant
symplectic structure, such that furthermore the as-
sociated two-form 1s exact, we can restrict the
Lagrangian Z to be of first order with respect to the ¢,
but of course not necessarily so with respect to x*. Then
the canonical formalism uses 7* 44 x Q, rather than
T*(M xQ)=T*M xT*(Q,as phase space. In all other
cases Z cannot be so restricted and the final phase
space has to be T* M xT*Q. We refer to these two
types as first order and second order intzsrnal spaces

respectively; the former are necessarily of even dimen-
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ston. The Poincare algebra is realised by functions and
Poisson Brackets (PB)on7*M x Q ot T*M xT* Q as
the case may be. The generators of the homogeneous
Lorentz group will have the form J,, = L,,+S,, with
3., related to the action of G on Q. Nontrivial internal
structure signals a non-zero Pauli-Lubanski vector W,
= 7€uvp0 P87’

The physical principles underlying the analysis
are: (a) the already stated transitive G action on 0;
(o) manifest Poincare invariance of the action;
() reparametrization invariance of the action, imply-
ing that ¥ be homogeneous of degree one in the
velocities x* and ¢”. Property (c) allows full freedom in
the choice of th evolution parameter, such as physical
time, proper time etc. Not all spaces Q allowed by (a)
are physically relevant. For a nontrivial Lagrangian to
exist, we must be able to find sets of functions on Q or
TQ, depending on whether we have a first order or a
second order internal space, transforming according to
the vector, symmetric second rank tensor, ..., rep-
resentation of SO(3, 1), so that on contraction with x*
x*x%, ... we may be able to form Lorentz scalars on
which L can depend. Another physically motivated
criterion that may distinguish some choices of @
compared to others 1s whether at the end of the
constraint analysis the Dirac Brackets {DB) of the x*
among themselves vanish or not,

We now briefly describe the internal spaces O
permitted by the minimahty condition {(a) above. 1t is
well known that any space Q carrying a transitive action
of a group G is essentially the coset space G/H for some
subgroup H in G. We are only interested in connected
manifolds @ as possible internal spaces, so we restrict I{
to be a closed continuous subgroup of G. All such
nontrivial H are known upto conjugation®: there are
eleven distinct possibilities plus two one-parameter
families. In each case, the dimension of 0 = G/H ts the
difference of the dimensions of G and H. In detail we
find: there are three possible distinct chosces plus a one-
parameter family of H’s of dimension one, (Q's of
dimension five); there are three s of dimension two,
(0's of dimension four); there are four distinct choices
plus a one-parameter family of three-dimensional 11's
(three-dimensional ('s); and finally there is just one I
~ of dimension four, (Q of dimension two). In this hut we
have not mentioned the case where 1] 1s the tnval
identity subgroup of G. This is certainly an allowed
choice leading to the internal space @ being Gitsell. WG
had been defined as SO (3, 1) rather than as SL (2, C),
this would ithen correspond to the Hanson-Regge
maodel where the internal variable is an element of
SO(3, 1)

— Fa— Sl . e —

In the context of linear relativistic quantum mecha-
nical wave equations Finkelstein? had made a similar
classification of possible internal structures. His enu-

meration was however incomplete as only eleven
possibilities were listed.

FIRST ORDER INTERNAL SPACES?

The physical idea behind the definition of a first
order Q 1s that in such a case there is no need to
miroduce new variables canonically conjugate to the
internal variables ¢", but that G-invariant PB’s can be
directly defined among the ¢ themselves. The dimen-
sion of such a Q must be six, four or two. The case of
dimension six corresponds to Q being G itself. If this
were indeed a first order internal space, it would mean
that the Hanson-Regge model permits an essential
simplification. However, since G = SL (2, C) is a semi-
simple Lie group, we can make use of the following
mathematical result®: the only coset spaces G/H admit-
ting a G-invariant symplectic structure are orbitsin the
Lie algebra G of G under the adjoint action of G, or
covering spaces of such orbits. Now every non-trivial
orbit in G is known to be dimension 4. It follows that
the Qs of dimension six or two, corresponding to H of
dimension zero or four, are not first order internal
spaces. This applies in particular to the Hanson-Regge
model. Among the three distinct Q's of dimension four,
only two turn out to be first order spaces, and the third
is neither an orbit in G nor a coveting space of an orbit,
We proceed to descnibe the two distinet fisst order @'s.

The linear space G can be identified with the space of
all real second rank antisymmetric tensors &, = — &,
and is of dimension six. Under the adjoint action by G,
¢,v transforms as stated, and there are two independent
invariants; in terms of the three-dimensional break-up
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Weomit from discussion thecase ¢, = Owhichhas ‘4|
= ¢, = 0 and forms an orbitall by itself Forapecitied
values €, = a? — b3, €, = ubofthe two invariants, the
set of atl allowed §,, constitute theorbat €, . 116, = 4,
itsuflicestotahca >0, b # O, whileaf ¢, = U, we must
allow the three possibilities (g >0, b =0} (=1, b
= (}and (g = 0, b > 0. It now turns out thot, viewed as
coset spaces, the orbat € 18 quute unique and excep-
tional, while alf other orbits ¢, are really essentially
the same. Sinve SL 2. Gyand SO (3, 1) share the same
Lic algebra, we may it we wish deseribe these orbits
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the language of the latter group. It then turns out that
the exceptional orbit 8, , is essentially the coset space,
SO (3, 1)/N, where N is the abelian two-dimensional
subgroup generated by, say,J, — K,and J, + K,; while
every other orbit is diffeomorphic to the coset space
SO (3, 1}/SO(2) x SO (1, 1), the subgroups in question
being penerated by J, and K,. (Here we use the
standard physics notation J, K for the generators of
SL(2, C) or SO(3, 1)). Thus as possible candidates for
first order internal spaces we need only consider Q
=, gand @ = G, , for b > 0; the Jatter choice is made
for simplicity and later convenience.

The abelhian subgroup N appears in the Iwasawa
decomposition G = KAN: K 1s the maximal compact
subgroup SU (2), 4 is abelian and is generated by K.
The coset space G/N is the internal space for the
spinonal model of reference (3); it is a two-fold cover-
ing of 6, ,.

On either orbit §, o, 8, , the definition of the G-
invariant symplectic structure is contained in the more
physical PB relations

{ f,uw éﬁﬂ'} = Gy éva ~ 4 éuu + d o va — Hvs ip,u: (2)

which are of course consistent with the constancy of
€., ¥, over an orbit. The internal contnbution §,, to
the total homogeneous Lorentz generator J | 1s in both
cases ¢,, itself. Using the (four independent com-
ponents of ) § and #n as local coordinates on an orbit,
one can explicitly reconstruct the closed nondegenerate
two-form @ “belonging to” the above PB’s. For both
choices of (, 1t then turns out that w 1s exact; we have
the globally valid expressions

i
In 12

Bothon 8, ,and 6, ,forb >0, n = 0is disallowed, so
¢ 1s indeed well-defined. Thus on these grounds, both
the coset spaces SO (3,1)/N and SO(3, 1)/5S0 (2}
x SO (1, 1) qualify as possible first order internal
spaces, We next descnibe briefly the kinds of nontrivial
Lagrangians that can be built in the two cases.

(1) Q= 90,0

Taking into account the structure of the one-form ¢
in (3), we write the Lagrangian in the form

E-n A dn. (3)

w=do, p=

PL(x, % & E)=—E nAa i+ L (x, x; §). (4)

In1*
For anisolated system, translational invariance imphes
that &’ cannot depend on x. Beyond this, .¥’ must

not depend on &, must be explicitly Lorentz-invariant,
and must be homogeneous of degree one in x. The
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leading term arising from ¢ happens to be exphcitly
Lorentz invariant by itself; it is also obviously homoge-
neous of degree one in velocities.

To be able to construct a nontrivial and Interesting
F’, we ask if we can build functions on Q, i.e. functions
of ¢,,,transforming asafour-vector, or as a symmetric
second-rank tensor,.... It turns out that one can
form a lightlike four-vector ¥, as follows:

Vo = (§8)'2 = (*)V5 V =nna &/(§H)'2

Thas 1s basic in the sense that all higher order symmetric
tensors DY that one might try to form on Q are
essentially polynomials in V,. Here DV 7 is the sym-
metric traceless tensor representation of SL(2, C) of
rank 2j. Thus the most general ¥’ in this case involves
one arbitrary function and has the form

L =(=32 ) A=V (=) (5

The dynamics and the constraint and trajectory struc-
ture, .e. mass-spin relation, for this model are described
elewhere’. Here it suffices to remark that the space-time
motion is similar in all respects to the spinor model of
reference (3).

2) 2=6,,b>0

On this orbit the one-form ¢ is explicitly invariant
under SO (3) but changes by an exact piece under pure
Lorentz transformations, so that d ¢ remains SO (3, 1)
invariant. In fact under the infinitesimal boost 6¢
=aqaAn on=—an {, la| < |, one finds

do =d(—=b*a n/n?). (6)

Turning to the construction of a term like Z'in (4), we
now find that it is not possible to form a four-vector

on Q. In fact the simplest tensor of type D'/ that one
can form is a second rank symmetric tensor ¢, belong-
ing to the representation D'*-

b2
r;ul = ‘:ﬂﬂ‘:g + Fg,uu‘ (7)

So the simplest Lorentz scalar vanable coupling inter-
nal and space-time variables 1s in this case x*x”¢,, %
and we have for % the general form

L= (=) fA), A=, Ef(—XP) (8)

The dynamics and other aspects of this model are
analysed 1n reference (9).

SECOND-ORDER INTERNAL SPACES?®

The number of posstble distinct candidates 15 now
quite large: ten individual H’s plus two on¢-parameter
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families. However, whereas with both possible first
order internal spaces it was possible to couple X* and Q
to construct nontrivial Lagrangians, we now find the
very interesting result that for certain choices of H, or
correspondingly O, no interesting coupling is possible.

We are now concerned with constructing
LagrangiansonTM x 7(Q), i.e. as functions of x, g and 4,
with the requisite properties. Under the (generally
nonlinear) action of G on the ¢’, the §" transform
linearly, with functions of g as coeffictents. We try to
form sets of functions of gand g, homogeneous of some
given degree in the g's, furnishing one of the
representations DV 7 of G; if we succeed coupling of 7Q
to TM 1s possible. First we consider expressions of the
first degree in the ¢, with functions of ¢ as coefficients.
At the pointon g = G/ H corresponding to the identity
coset, the g on the fibre of 7Q transform according to a
linear representation D{H) of H called the linear
1sotopy representation associated with the G action on
Q. A necessary and sufficient condition that we be able
to construct quantities linear in § belonging to the
representation DY # of G is that the restriction of this
representation to H must contain, upon reduction, the
1sotopy representation D{H) at least once. A similar
necessary and sufficient condition exists for second,
third, . . .degree expressionsin §: we replace D(H) by its
symmetrised Kronecker products D(H) x D(H)yymm.
D(H) x D(H) x D{H)symm, - . .- For expressions indep-
endent of the §'s, we use the identity representation of
H instead of D{H).

it can now be shown by using this criterion that for
certain choices of H, hence of (0, no coupling of 7¢
and TM 1s possible, because we are unable to form
functions on 7Q furnishing any of the repre-
sentations D' of G. This is the case when H = AN
correspondingto 0 = K = SU(2); i1 = U (1) A N cor-
responding to Q = 8% and when H is the three-
parameter group gencrated by J, = K,,J, + K, and J,
sin i+ K, cos f. The fact that these three otherwise
allowed internal spaces are not physically viable is a
somewhat unexpected result.

Even if no such nontrivial coupling of TM 10 70
exists, 1t might be possible to construct quantities
s{q, ¢), which are scalars under SL{2, C), and homo-
geneous of some degree nin the §'s. We can then set up
a Lagrangian

# o= (=X (sly, g(—2Fm (9
which may be regarded as trivial. Further analysis of
such possibilities 18 given in reference (3),

The remaining second-order internal spaces can be
clussified according to the lowest rank (27) symmetric

— _ = o L

tensor DY # that can be formed in each case, the
number of these, and so on in order of increasing
complexity. Thus there are eight cases of spaces Q
= G/H such that vectors can be constructed on TQ, and
one case where nothing simpler than a tensor D/ ' ¢can
be buillt. The Hanson-Regge model, with
H = ¢ and Q = G, provides us with an example where
four linearly independent vectors are already available
on Q.

As an example of a nontrivial second order internal
space we metion briefly the case H = 0 (1, 1). The five-
dimensional manifold Q = G/H is conveniently
visualized as the set of all pairs of mutually orthogonal
unit spacelike vectors (@*, b2 a’ =b* = 1,a-b=0. A
natural “internal symmetry group” arising in thiscase is
the group SO (2} mixing o* and b*. The most general
Lorentz, SO(2) and reparametrization invariant
Lagrangian which furthermore leads to the two natural
primary constraints Pra =0, P-b x Q turns out to be

Cs (&1 +E2)—~2¢8,
(__CE}J.-Z :
—2
b2tk Lo ‘53). (10)
Cs(— &) & &
where f is an arbitrary function of four arguments

and the complete independent set of Lorentz and
SO (2) invariants ¢ are:

£y = %%, by = (xa) + (b, &3 = (ra)? + (kb
= (X.0) (X.b)—~(%.b) (x.a) &5 = a.b, &, = @ + b?,
¢, = (d.b)* — a*b>.

& = { "'ii)hzf(

This model 1s 1in some respects like the Hanson-Regge
model in that imposition of an internal symmetry
simplifies the problem; its constraint structure is how-
ever more like the vector mode] of reference (3), in that
both P-a and P-b involve conjupate momenta only
hinearly. Further analysis of this maodel is gisen in
reference (9).

CONCLUDING REMARKS

Classical relativistic particles with munial internal
structure and (heir dynamics have been shown to be
related to coset spaces of SL(2, C) and Lagrangian
functions on them. First-order internalspaces, of which
thete are just two examples, ure related to orbits inthe
Lic algebra of G under the adjomt avhon. In both casey
we have exhibited the general Ligraongrans that can be
constructed on J A x 70, with the property of being
lincar inhomogencous in the ¢ Second-order internal
spaces, of which there are several, have to be handled
via the concept of the isolopy representation, whih
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determines whether and which representations DY 9 of
G can be realised on 7Q.

Various models studied by others can be recognised
in our general formalism. The original Hanson-Regge
modethas H = ¢, Q = G, and the Lagrangian is defined
on7M xT°S0 (3, 1) and has an internal SO (3, 1) sym-
metry. It is a second order theory in our nomenclature,
The choice H = N leads to a first-order internal space
which is the spinor model of reference (3): the latteris a
“two-fold covering” of the exceptional orbit 8, 4. The
case H = SU (1, 1) gives a second order theory identical
to the vector model of reference (3). The model of
Barducci and Lusanna'® uses an internal space
SO(3,1)x R? which is not transitively acted upon
by G: 1n our terminology this is therefore not in-
decomposable or minimal. The particle with a dipole
moment studied by Cognola et al'! uses a Lagrangian
which is of first order in the internal variables, but the
corresponding internal space is again non-minimal.
With additional kinematical restrictions, their
Lagrangian can be rewritten in a second order form on
an indecomposible internal space. This again cor-
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responds to H = SU (1, 1). Further connections to
available models in the literature are given in
reference (5).
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NEWS

PLANTS GET A CHARGE OUT OF SUNLIGHT

. . . Roger Leblanc (U. Québec, Trois-Riviéres) and
James Bolton (U. Western Ontario) are investigating
the role of solar photons in photosynthesis. “The best
way to appreciate what goes on in photosynthesis is to
follow an incoming solar photon as it impinges on one
of [a plant’s} photosystems. ‘The first structure that
such a photon encounters at the membrane surface is
an “‘antenna chiorophyll,” ” explained Leblanc. ‘This
chlorophyll molecule absorbs it, thereby raising the
molecule’s energy level to what chemists call an
“excited state.”” There are clusters of up to 400 of these
anfenna molecules bonded Lo proteins in each photo-
system and they act as a sort of photon concentrator.
Once the photon energy Is converted to an excited state
of the chlorophyll molecule, it is passed down below
the surface via other chlorophyll molecules through a
kind of stepwise induction process. By induction 1

mean that no electron transfer takes place. Rather, the
excited state is passed along from one chlorophyll
neighbor to the next until it reaches a site within the
complex called the *‘reaction centre™ * . . . According
to Bolton, the reaction centre chiorophyll-proten
behaves much like a man-made photovoltaic cell in
this process; these silicon-based structures work by
setting up regions of positive and negative charge (hke
the leads on a dry—cell battery), using sunhight to drive
the separation. ‘If it were possible to place electrodes
on either side of the reaction centre protein,” explaned
Boiton, ‘you could draw off an electric current.””™

[ (Wayne Campbell in Science Dimension 16(6): 20-
9, 1984) Reproduced wtith permission from Press
Digest, Current Contents®, No. 13, Apnil 1, 1985, p.
17, (Published by the Institute for Scientific Infor-
mation®, Philadelphia, PA, USA )]




