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ABSTRACT

This paper gives an introductory survey of the connection between the symmetry of a
physical system and the defects that can occur in it. The topological classification of
defects is described and illustrated with a simple example. Other possible applications of
homotopy theory are then mentioned. Finally a brief outlook for the future is presented.

INTRODUCTION

OLID state physicists traditionally idealize a
S solid as an infinite, perfect crystal. Though not
in conformity with reality, such an assumption
provides a convenient and good enough stepping
stone to the description of many of the observed
properties like thermal, electronic and optical.
Indeed, this fiction of perfect order 1s carried to
such an extent that in many well-known books** 2
on solid state physics, defects receive mention
only towards the end (seldom reached by most
readers!). There is unquestionable merit 1n the
above simplification but it does ignore an tmport-
ant fact of life namely, real crystaline solids
always have defects.

The existence of defects in crystals has been
reasoned out on various grounds—thermody-
namic (vacancies), flow properties (dislocations)
etc. There is, of course, also experimental evi-
dence for their existence. And while, as noted
above, some physicists have tended to underplay
defects, others, particularly those close to tech-
nology (be it semiconductor devices or metal-

lurgical), have always been quite conscious of

them and the important influence they (i.e.
defects) have on certain properties, especially
mechanical.

Defects are not a peculiarity of the crystaliine
state of matter. It is now known that they occur in
other ordered systems as well—liquid crystals,
superconductors and even superfluid helium
(both *He and *He), to name a few. With due
apologies to the poet, it almost secems like: If there
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is order, can defects be far behind!

In this article, I wish to summanze (in a
somewhat descriptive manner), recent develop-
ments concerning the connections between sym-
metry and imperfections® ~® which enables us to
have a unified picture of defects, their classifi-
cation, their stability and the rules for their
aggregation in various types of ordered con-
densed matter. Much of this unification 1s
through a skilful exploitation of the results of
algebraic topology®. Lest there should be some
skepticism as to whether such high-powered
machinery is actually required, I wish to point out
that without resorting to it, one could not really
come to grip with defects in superfluid *He>. Ina
similar fashion, considerable progress has been
made in the case of liquid crystals also?®: 1. It
further seems as if topological concepts are
unavoidable if one has to really understand the
structure of glass*2~ 2%, In a sense therefore, this
article could well be titled: Defects and Topology.

SYMMETRY AND ORDERING

Before discussing the connection between
symmetry and defects, it is useful to recall some
pertinent facts concerning symmetry and order.
For purposes of illustration, we shall consider the
planar magnet shown schematically in hgure 1.
We have here a set of spins aranged 1n a lattice,
each spin S (i) having rotational freedom in the
plane. At high temperatures the spins at ditterent
sites will be oriented at random characteristic of
spin disorder (see figure 1a), but at low tempera-
tures the spins will be aligned as in figure 1b.
(Strictly speaking this 1s not true; see, tor exam-
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tion temperature. At any given temperature, the
system seeks a configuration corresponding to
the minimum of the free energy. From figure 2 we
see that for T > T, the configuration chosen has
Y =0, i.e. it lacks order (as illustrated in figure 1a).

1 % Below T,., F(y) has a shape resembling the
,.-r—+¢—¥ . S E 1>T. bottom of a wine bottle. There is no umique
minimum, every point in the bottom edge (shown
T ? — —pn T with a thick line) quahfying equally. Thus, when
the system orders, it can choose any of the
A v s possibilities in figure 3a. Which one is actually
realized during a particular cool down from
*,f A above T, to below T, is a matter of chance.
{Q)
£
—— T<T
' | )
(b)
Figure 1. Schematic drawing showing disorder and
order 1n a planar spin assembly.
ple, reference 21. We shall, however, gloss over
this technicality!). (b)

It is convenient to introduce the complex order
parameter  defined by

W =S§,—iS, = yyexpib (1)

to discuss the transition between the disordered
and the ordered states in figure 1. Following

Landau:, one CO“'? write the free energy of the Figure 2. Free energy surfaces for the planar magnet
system In terms of ¢ as system for T>7, and T < T.. In equlibrium, the

F(y)=F,+ a[g[zlz +blyl* b>0 (2) system will be at the free energy minimum. For7T < T
this implies that the system can be anywhere along the
where a=a(I'—T,) (@ >0), and T. is the transi- rim at the bottomn of the “wine bottle” shown in (b).
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Figure 3. (a) shows the order parameter space for the

planar magnet. This is the bottom of the “wine bottle”

of the previous figure. In (b) are illustrated various
possible ordered states that can arise when the system
is cooled to below T, The corresponding configur-
ations in the order parameter space are shown n (a).

Several points are worth underscoring at this
stage, Firstly, the disordered system has 1n fact a
higher symmetry than the ordered system.
Puzzling though this might sound, this is easy to
understand when we note that the spins in the
disordered systems, i.e. the pattern of figure la
may be rotated in any way we like without our

3

il L A

being able to detect the difference. On the other
hand, we are definitely able to say that the
different patterns in figure 3b, (all of which
represent ordered states), are rotated with respect
to each other. One formalizes this observation
with the statement that whereas the disordered
state is invariant under the group G of planar
(spin) rotations, the ordered state is not. It is as if
the system sheds some symmetry while becoming
ordered, a phenomenon technically referred to as
symmetry breaking. In the present example,
continuous rotational symmetry 1s the one that is
broken.

ORDER PARAMETER SPACE

We next turn to the ordered states illustrated in
figure 3b, where also there are a few points to be
noted. Firstly, the ordered state too has a sym-
metry group of H of its own which leaves that
particular state invariant. This group H is natur-
ally a subgroup of G and 1s referred to as the
isotropy subgroup. In figure 3a, each ordered
state has its own isotropy subgroup but, as 1s to
be expected, all the different isotropy subgroups
H,, Hg, H; etc are equivalent in a group-
theoretial sense. It should also be clear from
figure 3 that it is possible to go from any ordered
state |/, to any other state ¥, Y etc by acting on
W , with an appropriate element of G (obviously
not contained in H,). In this way, one can build
up the entire circle shown in figure 3a. The
manifold so built up is variously referred to as the
order-parameter space (OpMs) or as the manifold
of internal states.

Going back to figure 2, we note that the opMs 1s
a surface of minimum energy. In general, this
surface has a dimensionalty (n —1), where n is
the dimensionality of the order parameter.
Technically, the opms R = (G/H), the space of
cosets of G with respect to H®,

ORDER PARAMETER AND IMPERFECTIONS

The space R plays a key role in the topological
classification of defects. It is important to ap-
preciate that R 13 manifold in an abstract space.



4

The significance of this statement will (hope-
fully!) become clear shortly.

It might have been noticed that the order
parameter in Landau’s theory does not involve
the spatial coordinate. When a system orders, it
has the same value for the order parameter at all
points in space; in other words, the ordering is
perfect. Viewed in this hght, an imperfection is a
state where the order parameter is a function Y (r)
of r. Such imperfections can either be singular or
non-singular*?,and if, of the latter type, are often
referred to as textures. Figure 4 shows two
examples of singular defects in a planar magnet.

How does one recognize a defect, and how
does one classify them? It is in answering these
questions in a generalized way that topological
concepts enter into the picture. Consider a sin-
gular defect. This is one where the order para-
meter field (like ¥ (r) of the planar magnet)
becomes singular at some point r. Since matter is
actually discrete rather than continuous (being
made up of atoms), ¥ (r) in real life escapes a
singular fate. We shall however sidestep these
subtleties by agreeing not to look closely inside a
small region called the core which surrounds the
defect. Outside the core, the order parameter
does not vary so strongly (as it does while
approaching the singularity), and it is by scanning
these slow variations that we must recognize the
defect. The actual identification is effected by a
technique familiar in characterizing dislocations
in crystal i.e. by traversing a closed contour C
surrounding the suspected defect, and measuring
Y (r) everywhere along this circuit. Clearly i (r)
must come back to its initial value when we
return to the starting point. However, this does
not imply that the phase angle 0 in (1) must also
come back to its initial value. It could in fact
assume the values (8 + 2nn) where n 1s an integer.
If n = 0, then there is no defect in the encircled
region but if n # Q there is a defect, the value of n
characterizing the defect (see figure 4).

DEFECT CLASSIFICATION: AN EXAMPLE

Let us now consider the round trip in real space
along C vis-a-vis R which, remember, is an
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Figure 4. Two of the simplest defects of the planar
magnet system.

abstract space®. This is illustrated in figure 5. We
observe that as C is traversed, local regions

appear as if perfectly ordered, with the local value
of ¥ corresponding to some point or other of the

oprMs R. In other words, as the closed contour C
is traversed in real space, a corresponding loop 1s
mapped in the abstract space R.

Figure 6 shows some typical defects of the
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Figure 5. (2) shows schematically a topological defect
in the planar magnet. As the contour C surrounding
the defect is traversed, one sees that in local regions like
X, Y and Z, it appears as if there 1s perfect order. The
defect pattern can thus be characterized by sequen-
tially describing the local scenario, using the language
of perfect ordering, i.e. the opms R 1llustrated in (b).

planar magnet and the corresponding loops in R.
Two features are noteworthy. Firstly, even
though one makes only one circuit along the real
space contour C, the loops produced in R by the
mapping process can have more than or even less
than one turn. Further, while some loops can be
continuously shrunk to a point (see figure 6),
other loops cannot be so shrunk. This important
point is amplified in figure 7 where, as an
illustrative aid, the space R is depicted as a
cylindrical former. If now we imagine the loops
to be perfect elastic bands wrapped around the
cylinder as shown, we can readily see that only the
loop with less than one turn can be continuously
shrunk to a point without breaking it. All other
loops while deformable, cannot change their
winding number (i.e. number of turns in the
loop). From this we can deduce that defects
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Figure 6. Illustrated here on the left are various spin
configurations of the planar magnet. While that in
(a) represents perfect ordering, all others represent
states with defects. To assess the defect, one makes a
round trip along contour C in real space. This leads to
loops in the order parameter space R as shown on the
right. If these Joops can be continuously shrunk to a
point, then the corresponding defects are topologically
unstable. Thus defect (b) i1s'a trivial one,

corresponding to loops in R which can be
continuously shrunk to a point can be chminated
by local adjustment of the spin orientations {also
referred to as local surgery; compare figures 6a
and b). On the other hand, defects with winding
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Figure 7. Pictorial aid to illustrate the shrinkability or
otherwise of loops in order parameter space. For
explanation, see text.

number n # 0 cannot be so ehiminated. Their elimi-
nation requires readjustment of spins over the
entire lattice which clearly will cost alot of energy
especially in the thermodynamic limit. This leads
us on to the topic of stability of defects. Whereas
defects with n = 0 are unstable, those withn # 0
are not, the stability being reclated to the pro-
perties of loops in R, in turn derived from the
topological properties of the space R. The stabs-

lity we are considering is therefore the topological
stability. Notice also that we have quietly intro-

duced a defect label called the winding number
which is based on the number of loops in R
produced by the mapping of ¥ (r). In a nutshell,
the defects we are presently considering are
related to the topological properties of R, and
there is a labelling scheme possible based on these
topological properties. For this reason such
defects often are referred to as topological de-
fects*. The entire qualitative reasoning given

* A substitutional impurity in a crystal s not a topological
defect. A dislocation however is.

above can be formalized using homotopy theory
which, hopefully, will be comforting to those who
prefer rigour!

HOMOTOPY AND DEFECT CLASSIFICATION

We can now generalize the above discussion.
Existence of topological defects in condensed
matter can be assessed by scanning over an
appropriate Burger’s circuit surrounding the
suspect region®. For point defects in 2D and line
defects in 3D, the circuit is a loop or circle (like in
the planar magnet example). For point defects in
3D it is a sphere. Once again, one makes a round
trip in real space along the Burger’s circuit and
studies the variation of the order parameter field.
These field vanations are then mapped into R
whereupon one gets loops or spheres (as the case
may be) in R. The classification of defects now
boils down to a study of the property of the loops
or spheres in R.

Directing attention to the loops first, one can
regard each loop as an element of an abstract
group, and, based on their homotopic properties,
assign a group structure to the collection of
loops. This group denoted 74 (R) 1s referred to as
the fundamental homotopy group of R or simply
as the fundamental group of R. It can be shown
that there are as many distinct defects as there are
classes in n; . For the planar magnet, n; = Z the
group of integers. The existence of winding
numbers thus emerges from an analysis of the
homotopy properties of loops in R. It 1s import-
ant to appreciate that this can be done without
requiring a knowledge of the actual field patterns
such as those shown in figure 3. All that needs to
be known is the structure of R. The defect
classification just described is rather similar to
the classification of normal modes of vibration of
a molecule using purely the symmetry of the
molecule. To construct the field patterns (as in
figure 4) one must appeal to physics even as in the
molecular example, we must analyze the dyna-
mical equations to explicitly construct the
eigenvectors.

The group m, helps label point defects tn 2D
and line defects in 3D. Likewise, from a study of
spheres mapped into R, one can construct the



Current Science, January 5, 1985, Vol. 54, No. ]

second homotopy group =m, which comes in
handy for classifying point defects in 3D. Table 1
summarizes the basic 1deas.

Table 1 Summary of homotopic classification of defects. For
simplicity, we assume that the order parameter is a vector with n
components. The OPMS is then the sphere S,,. One can associate a
dimensionality d’ with defects. Using the theorems

n(S)=0
n(S) =2,

where i, j are integers, 1t; Is the homotopy group of orderiand Z
is the group of integers, one finds that topologically stable
defects have the dimensionality d' = d —n. To assess the defect
one surrounds it by a Burgers’ sphere of dimensionality r where
ris defined by (d' +r+ 1) = d. Shown below are the topologi-
cally stable defects possible for various (n, d ) combinations. For
n > d, there are no stable defects.

Jori<j

1 point ~ —
2 line point -
3 wall line point

OF WHAT USE IN HOMOTOPY

Classifying defects using the homotopy groups
r, 15 just one of the uses of the homotopy theory.
There are many other uses, and, as with classifi-
cation, these other applications also have their
analogues in the conventional applications of
group theory, say to spectroscopy. One such
application concerns the combination of de-
fects?3, In the case of the vortices of the planar
magnet, one can intuitively see two vortices with
winding numbers n; and n; can combine to give a
composite one with winding number (n, + n;).
More interesting is the case of the defects.

Consider the two shown in figure 8. When they
move (which can happen in the presence of
stress), they can have an encounter and the
question is whether they will just cross each other
as in 8b or get entangled as in 8c. This depends on
whether or not mn, is Abelian, and if n; 1s non-
Abelian, rather specific statements can te made
about scars produced by the entanglement, from
an analysis of the class multiplication structure of
ni;. This study of combination of defects is not

(a) {b) ()

Figure 8. (a) shows two line defects. In (b) the two
have crossed without a scar. This happens if =, is
Abelian. If n, is non-Abelian, the situation is as in (c).

unlike the use of group theory to study selection
rules.

Yet another application of homotopy concerns
changes to defects during a phase transition. This
1s particularly interesting in the case of the A-B
transition in superfluid *He, and thanks to the
complexity of the order parameter, the problem
cannot be tackled without resort to topological
concepts?4. The analogous conventional prob-
lem is crystal field splitting, where again one
studies changes in classification arising from
changes in symmetry.

In passing it is worth observing that homo-
topic analyses of defects in condensed matter
have close parallels in particle physics®?, It is not
surprising therefore to find theorists working on
polymers or liquid crystals and monopoles at the
same time!

BEYOND SIMPLE HOMOTOPY

So far, we have restricted ourselves mainly to
single defects and at best a combination of two of
them. Such studies have yielded a wealth of
information, particularly in the case of *He and
certain phases of liquid crystals. In all the success
stories thus far, the ordered system retains its
continuous translational symmetry, the (continu-
ous) symmetry broken during the ordering pro-
cess being something else (often a rotational
symmetry of some sort). Application of ho-
motopy to systems with broken translational
symmetry (e.g. crystals) poses some problems®’,
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and progress to the extent realized in *He, for
example, is yet to be attained.

Moving from single to many defects, one now
has the analogue of the familiar many-body
problem. The many-defect problem is still in its
infancy but it is already clear that as in the case
of conventional many-body problem, field-
theoretic techniques will be a sine-qua non. It is
also Iikely that inputs derived from homotopic
analysis of single defects may be necessary?®. In
addition, fresh ideas like gauge fields?’, fibre
bundles?® etc may also have to be imported.

What we have described is but the tip of the ice
berg. In a broad sense, one is now trying to obtain
a unified and sweeping perspective of the various
phases of condensed matter with due regard to
symmetry, in which defects find a natural place.
This 1s best exemplified by the fascinating table
prepared by Michel® which we reproduce here as
table 2. The list is no doubt partial but one can see
that one is trying to encompass other states of
matier besides crystals into the symmetry
scheme. The table raises many tantalizing ques-
tions. Where do the many-defect sohds consid-
ered by Aubry?? (whose description requires
concepts related to chaos) fit in? Do they form a
part of this Grand Design? And what about glass
which, according to some, are really ordered in an
appropriate curved space even though they may
appear disordered in Euclidean space? and so on.

Table 2 Thus table adapted from reference 9 deals with various
mesomorphic states of matter. Here the parent group G is the
Euclidean group E{3). Different states correspond to different
isatropy subgroups H. In this case, all are compact. H, is the
largest connected subgroup of H while T, =HNT where T is
the translational subgroup of E(3) R Is the space of real
numbers, R* = R X Rand R®> = R x R x R. Z s the group of
integers, Z* =2 x2Z and Z>=2Z x Zx Z. U(l) 1s the
uniary group,

Family T, H, Description

I, R? R3 x U(l) Ordinary nematics

I, R* R? Exceptional nematics

11, R*xZ R? Cholesterics

H, R2x Z  R*x U(l) Smectics A

1., R¥xZ R? Smectics C

V R? R? Chiral smectics

111 R x Z? R Rod lattices (e.g.
lyotropics)

v Zz’ £1) Crystals

CONCLUDING REMARKS

To conclude, we are moving away from the era
when perfection and defects were studied 1n
150lation. Not only have we come to recognize
that defects have a deep connection with sym-
metry, but we also find that in contrast to its
relative neglect in the past, the study of the defect
state 18 now attracting the use of the most
sophisticated tools physicists command at pre-
sent, normally reserved for particle theory! More
important, we might even uncover a Grand
Design lurking behind the various apparently
unrelated phases of condensed matter. The day is
also not far off when attention will turn to the
fundamental aspect of defect dynamics, espec-
ially as it is closely related to flow properties>°.
Here again a cross flow of 1deas from elementary
particle theory is highly likely?!.

It is heartening that Nature is after all not
mundane at any level! If defects appeared dull
and uninteresting in the past, it was largely the
result of our own ignorance. Mercifully we are
making up for our past neglect, almost with a
vengence it seems!

29 October 1984
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ANNOUNCEMENTS

INTERNATIONAL SYMPOSIUM ON WHOLE-PLANT PHYSIOLOGY: CALL FOR PAPERS

The International Union of Forestry Research
Organizations (IUFRO) is sponsoring a symposium
on the “Coupling of carbon, water and nutrient
interactions in woody plant soil systems” on October
611, 1985 at Knoxville, Tennessee, USA. The meet-
ing will promote the synthesis of research on
physiological processes at the whole-plant level. Four
sessions of invited and contributed papers will address
the linkages between water-nutrient, carbon-nutrient,
carbon-water and carbon-water-nutrient interactions
of forest, orchard and plantation tree or shrub species.

The scope of the symposium includes source-sink-
storage relationships of carbon, water and nutnients;
diurnal and annual cycles of physiological variables,
photosynthesis, translocation, transpiration, nutrient
and water uptake, and nutrient utilization; enzymatic

and hormonal regulation; influence of soil and aenal
environment and the rhizosphere on plant growth and
development; physiological characteristics influencing
the competition between individuals for resources
from the environment; experimental and modeling
methods of whole-plant research.

Contributed papers on the above themes are wel-
comed. Authors should submit an abstract of 200-300
words (four copies) to the Organizing Commuittee as
soon as possible but no later than 15 May, 1985 for
program planning. Please ensure that your name angd
full address for correspondence appears on the ab-
stract and send to R. J. Luxmoore, Environmental
Sciences Division, Oak Ridge National Laboratory,
Oak Ridge, Tennessee 37831 USA, Telephone contact
at (615) 574-7357.

e

NATIONAL SEMINAR ON LINEAR FREE ENERGY RELATIONSHIP AT MADRAS

Professor and Head of the Department of Chenustry,
College of Enginecering, Anna University, Guindy,
Madras 600 025,

The above Seminar will be held at Anna University,
Madras during February 27-March 1, 1985. For
details please contact Prof. P, Ananthakrishna Nadar,
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