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THE atttention of many research workers?~7 in fluid
mechanics has been directed towards studying the
influence of dust particles on the motion of fluids in the
past few years. Recently, the flow of a viscous incom-
pressible gas with uniform distribution of dust par-
ticles through a hexagonal channel with arbitrary time
varying pressure gradient has been studied”.

The present investigation aims at extending the
analysis of Gupta and Varshney® in the case of a
transverse magnetic field.

Formulation and solution of the problem

Using a rectangular cartesian coordinate system
(x, y, z) such that z-axis is along the axis of the channel
and the cross-section of the channel is formed by the
straight lines:

&

3

The pas and particle velocities u(x, y, t) and v(x, y, t},
respectively, are in z-direction.
Under the transformations

X, =y, Xx,=y—+/3x and x3=y+\/§x,

the non-dimensional momentum equations® after ap-
plying a constant transverse magnetic field of strength
H, appear in the form:
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— = et d—+4-—
5 f(r)+(ax¥+ +

ox%  Ox3
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2 : —4
M 5x15x2 +2ax15x3 ax23x3)u
4+ Bv —u}~ My, (2)
dv/ot = L(u—uv) (3)

where f = (f/r) = N.Ka*/pv, f=N,m/p, r=my/
Ka® L =1/y, M = oBla*/pv (magnetic field para-
meter) are dimensionless constants and —op/oz
= (1), an arbitrary function of time, By (= p.Ho) the

component of electromagnetic induction, ¢ the elec-
trical conductivity, u, the magnetic permeability and
other symbols have their usual meanings®,

Non-dimensional initial and boundary conditions
arc.

(i) t < 0! u(xl’i X2y X3, t) = () = U(xh X3y X3, t)‘:
every where in the channel, (4)

(i) t > 0, u(xy, X3, x3,8) = 0= v{xy, X3, X3, )

at X, = £./3/2, x; = £ /3 and x; = +./3. (5)

Due to symmetry of motion about x; =0, x, =0
and x, = 0, we shall consider the motion in the region
x, 2 0,x,; = 0and x; > 0and accordingly the bound-
ary conditions (J) become

“(xll X711 X3, t) == I:'(3":1» X2y X3, t)! |

at x, ==\/3—/2, x1=.,/§and xg=\/§, (6)
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To solve the problem by using the technique of
integral transforms, we use finite Fourter cosine trans-
forms and inversion formula®, Multiplying (2) and {3)
by [cos (P,x;) " cos (Q,x;) " cos{R,xs)] and integrat-
ing within the limits O to \m 2,0to /3 and 0 to ﬁ
and using conditions (6) and (7), also using finite
Fourier cosine transforms, we get

oU /ot = (Fl)ﬁqﬂf(z)-—-b U+ f(V~U)-MU
T PRQR ’

()

gV /it = L(U-V), (9)

where U, V, b, P,, @, and R, have the same values as
in Gupta and Varshney>.

We apply Laplace transformsto (8) and (9)under the
transform initial conditions U =0=V at t =0, we
get

T=" 106, U+ (V- MT.
P,Q,R,
(10
sV=LU-V) {t1)
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where U, 7 and fis) are Laplace transforms of the
respective quantities.

Now to obtain u and v in the case ol constant
pressure gradient, first solve (10) and (11) for Uand ¥V
and then immvert Laplace transforms by convolution
theorem and after that applying inversion formulae for
fintte cosine transforms and thea putting f() = C,
where C iIs an absolute constant, and on simplifying,
we get

16C

> 4
u=2 ¥

3-\/3 =0 qgﬂ rgﬂ PquRr(bpqr + M)

o0 (_])p+q+r
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x cos(P,x,} cos{Q x;)cos(R, x;) (13)

Figure 1. Velocity profiles of gas for constant pressure
gradient C, for different values of M and T.
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Figure 2. Velocity profiles of particles for a constant
pressure gradient C, for different values of M and T-

Deduction

When magnetic field parameter M — 0, the problem
reduces to that considered by Gupta and Varshney>.

Conclusion

We have plotted u and v for different values of r and
M with r = 0.8 and f = 0.2 under constant pressure
gradient, as shown in figures 1 and 2. It 1s clear that u
and v decrease with the increase of M. Thus the
implementation of a magnetic field is a device for
laminar flow control, while ¥ and v increase with the
lapse of time and have a maximum on the axis of the
channel. It 1s also evident from the figures that the gas
moves faster than the particles.

Authors are highly thankful to the learned referee
for his critical comments and suggesuons.
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(NH,),ZnBr, belongs to the (NH,),ZnCl,? family of
crystals which exhibit successive phase transitions and
incommensurate phases®. X-ray structural studies?
have shown that this crystal has an incommensurate
phase in the range 395432 K. Cs,ZnC(Cl,, another
member of the family, also shows a high temperature
phase transition which is probably to an incom-
mensurate phase?. This paper reports light scattering
intensity and Raman spectroscopic studies of the high
temperature incommensurate phase in (NH,),ZnBr,.
Preliminary Raman spectroscopic studies, particularly
in the low temperature ferroelectric phase?, have been
reported elsewhere’:®,

Polycrystalline samples of (NH,),ZnBr, were
grown at room temperature (20-25°C) by slow evapo-
ration of the aqueous solution of NH, Brand ZnBr, in
stoichiometric proportions. Unpolarised light scatter-
ing intensity and Raman spectroscopic measurements
were made, using techniques described in an earlier
communication®,

Figure 1 shows the total intensity of light scattered
at 90° from the sample as function of temperature. A
very large increase in the vicinity of 400 K shows
striking evidence of the incommensurate phase.

Figures 2 and 3 show the results of Raman spectro-
scopic studies on the same sample. The peak heights of
three different Raman lines (figure 2), corresponding to
internal modes of the ZnBr? ~ ion, versus temperature
show a large increase in the region corresponding to
the incommensurate phase and the integrated areas
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Figure 1. Total intensity of light scattering vs tem-
perature
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Figure 2. Peak height vs temperature

under two Raman bands (figure 3) show a similar
behaviour.

The incommensurate phase is characterised by a
complex order parameter®’ with amplitude fluctu-
ations (amplitudons)and phase fluctuations {phasons).
Amplitudons are generally observable by Raman
spectroscopy, whereas phasons contribute to the
Central Peak”. A soft amplitude mode was observed In



