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ABSTRACT

The occurrence of chaotic motions in classical dynamical systems and its relevance to
physical situations is discussed. The question of whether this classical phenomenon has a
meaningful quantum parallel is current; some approaches are reviewed.

INTRODUCTION

ANEW cross-disciplinary area of basic re-
search-—the study of chaotic phenomena—
has emerged in recent years! 3. This has in part,
been due to the recognition of the essential
nonlinearity of real physical systems (as opposed
to 1dealized models which are almost always
hinear approximations), and has brought about
the realization that there can be novel, unintuitive
and unpredictable behaviours associated with
cven the simplest nonlinear systems.

Chaos 1s most conveniently thought of, as a
dynamical phenomenon, the situation being such
that complete knowledge of a system at one time
still renders impossible the task of predicting the
future (or past) history of the system. This
unpredictability is not due to any ‘uncertainty’ or
‘fluctuations™—the chaotic behaviour that is dis-
cussed 1n this article 1s a product of strictly
deterministic equations®.

A dynamical system D is simply defined as the
collection of an independent variable, ¢ (which
can either be continuous or discrete) dependent
variables, x, and the equations of motion for x
given by some prescription P(x),

D = {t; x; P(x)} (1)

Apart from the most obvious case of systems in
classical mechanics—where ¢ is the time, x refers
to position and momentum variables, and P(x)
represent the classical equations of motion—a
variety of physical situations can be viewed as
dynamical systems. Examples can be drawn from
several areas—e.g. chemical reactions,

Ay
A+B=C

ks

then ¢ 1s again the time, x refers to the concentra-
tion of the species A4, B, C and P(x} 1s defined via
the equations

dx,/dt = —k;x,x;+ kX,
dx,/dt = —kyx x;+ kX,

dx./dt = kyx xp—kyx,

Discrete dynamical systems obtain in some prob-
lems in population biology”. The normalized
population of some species at generation ¢ is
related to the population at generation (¢t + 1) by
a recursive relation; one example i1s the logistic
equation,

Xy & ﬂx:(l _xr)

The detailed knowledge of x as a function of ¢
defines a trajectory or orbit in the configuration
space of dimension n (where n is the number of
dependent variables). When the equations of
motion are nonlinear, some properties of these
orbits can be as random as the outcome of coin-
toss experiments. (In the literature, the words
‘chaotic’, ‘stochastic’, ‘erratic’, ‘irregular’,
‘random’ have at one time or the other been used
synonymously. The preferred nomenclature at
present? is self-generated or deterministic chaos).
Figure 1 shows two orbits of a nonlinear system,
in order to visually contrast the possible com-
plexity of chaotic orbits with the simplicity of
non-chaotic or regular behaviour; the dynamical
system is a “billiard”, a generalization of the
familiar particle-in-a-box problem to enclosures
with reflecting boundaries and arbitrary shapes.

Dynamical systems are further classified as
conservative and dissipative. These are distin-
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Figure 1s. A typwcal orbit in a circular bilbard.
Within the billiard, the potential ¥ = 0; at the bound-
ary, ¥ = oc. Thus there 1s only specular scattering at
the edges. All orbits in this system are of this type: note
the inner caustic curve formed by the orbit.

Figure 1b. A typical orbit in a “stadium” billiard.
Unlike figure 1a, there is no caustic curve. All regions
of the enclosure are visited by the orbit, unhke the
excluded inner area in the previous figure.

guished by the fact that volumes in the configur-
ation space are conserved under the evolution in
the former case, while for the latter, any volume
shrinks asymptotically. Ap important class of

conservative systems are those described by a
Hamiltonitan. The phenomenology of chaos in
these two kinds of systems 1s somewhat different.
In this article we restrict attention to the latter
class®.

CONSERVATIVE SYSTEMS: HAMILTONIAN
MECHANICS

The equations of motion for Hamiltonian
systems are the Hamilton’s equations; x denotes
position, g, momentum, p, variables, and the
configuration space 1s termed the phase space.
This space 15 of dimenston 2n where n is the
number of degrees of freedom. Thus

D = {t;q, p; dq/dt = CH/Cp,
dp/dt = —¢H/dq} (2)

Furthermore, there 1s at least one constant of the
motion, the Hamiltonian function H(p, q) itself,
since dH/dr = 0. (With no loss of generality, we
have taken H to be autonomous). As is well
known®'t one can often find a generating
function for a canonical transformation to new
variables such that the transformed Hamiltoman
15 a function of the new momentum variables
alone (this is the usual transformation to action-

angle variables):
(p.q)— (1, 6) (3)
H(p, q) - ' (I)
dl/dt = —¢H' /¢80 =0

and thus the I's are constants of the motion.
Systems for which this is possible are termed
integrable. The hallmarks of integrable systems
are (i) there are n constants of the motion (the nl
variables), (ii) the equations of motion can be
explicitly solved—these systems are regular {pre-
dictable), and (ii1), if the constants are i invo-
lution, Le. if the Poisson bracket {/;, I, } = O for
all j, k, then the orbits are constrained to lic on n-
dimensional tori in the phase space' !4, (Note
that this s a severe restriction the dimension of
the phase space is 2n, while that of the motion 1s
only n). A special class of integrable systems are
those that can be reduced to n uncoupled 1-
dimensional problems—these are termed separ-
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able (and 1n fact constitute the most familiar
examples of mtegrable systems).

However, integrable systems are rare—most
Hamiltonian systems ar¢ nonintegrable, i.e. no
transformation to action—angle variables exists
in the (generic) typical case. Further, there i1s no
simple way by which a system can be shown to be
integrable other than by explicitly constructing
the integrals of motion. Recently!?7!3 it has
been seen that many integrable systems can be
1identified by the fact that the equations of motion
have the Painlevé property—that their general
solution in the complex time plane has no
movabile singularities other than poles. The con-
nexion between integrability and the Painlevé
property i1s not completely understood and forms
the basis of much current research interest'*-1>,

It might be thought that in nonintegrable
systems, since the restriction of the motion to n-
dimensional toriis removed, the orbits are free to
wander over the entire energy hypersurface
(the Hamiltonian i1s always a constant of the
motion). If true, the ergodic hypothesis of
Boltzmann —that time and space averages of
dynamical variables are equal - would be valid. In
reality, however, this conjecture is false, as was
shown by the Kolmogorov-Arnold—Moser
(xAM) theorem' " ' % The kam theorem states that
in a nonintegrable system that is perturbed from
an integrable one, when the perturbation is
suthciently small, then most of the motion re-
mains on n-dimensional tori. Further, the KaM
theory provides a convergent perturbation
scheme through which the toroidal motion in a
nonintegrable system can be constructed. The
phenomenology of the orbit motion in such
systems is best discussed via an example, the most
notable being the study by Hénon and Heiles!® of
stellar motion in an axisymmetric galaxy. The
relevant Hamiltonian

H=(pl+pl+x2+y32+x2y—y¥3 (4)

1s identical to that for two coupled mechanical
oscillators. The phase space is of dimension 4, the
constant energy hypersurface is of dimension 3,
and 1if integrable, the motion would lie on 2-
dimensional tori (figure 2). The orbits can be

Figure 2. Example of a 2-dimensional torus.

visualized by slicing through the 3-d energy shell
with a 2-d plane. The intersection of a torus with
this plane would be a closed curve. Such a
representation is known as a Poincaré surface-of-
section. { To obtain this, the equations of motion
are integrated for some set of initial conditions at
a fixed value of H, and the values of y and p, are
noted when x = 0, and for a given direction of p,,
either p, < Qor p, > 0]. Atlow energies, when H
is small, the nonintegrable term x2y is also small;
in figure 3a the successive points seem to lie on
smooth curves in the y, p, plane. Note that these
tori are quite distorted trom the tori1 of the
integrable system. As the energy is increased, a
new type of motion becomes apparent, typified
by the points in Fig. 3b which have no discernible
pattern. This latter type of motion is termed
chaos. Finally, as the energy 1s increased further,
almost all tori disappear (figure 3c) and the
motion is largely chaotic. However, it must be
noted that in any nonintegrable system there is
always some chaotic motion regardless of the size
of the perturbation term—if figure 3a were
redrawn on a sufficiently large scale, microscopic
regions of chaotic motions would be seen*>
interspersed among the tori, similar to figure 3b.
Considerable effort’” has been devoted to a
determination of the so-called chaotic transition,
when the motion in a given nonintegrable system
changes from being largely toroidal to largely
chaotic. {(For the Hénon-Heiles system?®, this
happens around H = E = 1/10). The most suc-
cessful of these methods are based on an examin-
ation of the interaction of internal resonances
that can occur’® in coupled oscillator systems.
Although nonlinearity i1s a necessary condition
for nonintegrability, it is not suflicient. Extremely
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Figure 3. Surfaces of section in the p,, y plane at
x == 0 for the Hénon-Heiles system. Smooth curves can
be drawn through some sequences of points; this is the
hallmark of toroidal motion. A single chaotic orbit is

responsible for the random sequences of points in each
of figures 3b & c.

nonlinear systems can be integrable—a famous
example 1s the “Toda lattice” of particles interact-
ing via an exponential potential. For the case of
three particles, the Hamiltonian,

H = (p? +p})/2 + {exp(2y +2,/3x)

+exp(2y — 2\/3;:() +exp(—4y)}/24—1/8

permits the (very non-obvious) second constant
of the motion, in addition to H,

F = 8p.(p2 ~3p2) + (px+/3p,)
exp(2y —2,/3x) + (p, — /3p,)
x exp(2y + 2./3x) — 2p, exp(—4y)

One can check that {F, H} = —~dF/dt = 0, and
thus all motion I this extremely nonlinear

system lies on 2-tori.
Several qualitative differences exist between

toroidal and chaotic motions—the most striking
being the dimensionality of the orbit: n n the
former case, and usually 2n—1 in the latter
(although in some cases of intermediate, fractal
dimension have also been seen). Furthermore,
regular motion is stable in the sense that nearby
regular orbits scparate only linearly in time,
whereas nearby chaotic orbits separate at an
exponentially fast rate. This latter property is an
example of the extreme sensitivity of chaotic
motions to initial conditions, and allows for a
quantitative characterization of the degree of
chaos in terms of the Liapunov exponent, the rate
of separation of orbits. Another quantifiable
difference between these kinds of motion is the
range of frequencies present. Toroidal motion is
periodic or quasiperiodic, and hence there can be
at most, a fimte set of frequencies present.
Chaotic motion is aperiodic—the frequency
spectrum s virtually continuous. The founer
transform of x(t) or y(t), the power spectrum thus
offers a convenient characterization of the dif-
ferent types of motion in nonintegrable systems.

Since Hamiltonians such as (4) arise in a variety
of contexts—e.g. astronomy, plasma physics,
electronic circuits, atomic physics, molecular
vibrations-—several aspects of the nonintegrable
dynamics are of interest!”. In the next section we
discuss one such aspect, the quantum mechanics
of nonintegrable systems’' %%,

QUANTIZATION OF NONINTEGRABLE
SYSTEMS

Since the early days of quantum theory, 1t has
been recognized that nonintegrable systems pose
a special problem vis-a-vis quantization. Recall
that the Bohr-Sommerfeld (B-S) principle (in
one dimension, eg. for a simple harmonic oscil-
lator) relies on computing the action integral
along a closed classical orbit (higure 4),

1

I =—
2n

pdq (5)
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Figure 4. An orbit in a 1-dimensional potential. The
action is the area enclosed within the curve.

and obtaining the quantum levels by the con-
dition I = mh with m as an integer. When a
multidimensional system is separable, the genera-
lization of the B-S rule 1s obvious; however, when
the system is nonseparable, (whether it is in-
tegrable or not), a modification of the B-S
principle 1s necessary. This was suggested by
Einstein??, by requiring that the action integrals
be computed along independent paths C; on tori,
and individually quantizing these,

1i=<§;p-dq i=1,2....n (6)

G

I,=mh k=12....n (7)

Note that there are n independent paths on a n-
torus (figure 5). Along with refinements intro-
duced by Brnllouin, Keller and Maslov, this
principle (eBkM) forms the basis?® 2! for the
semiclassical quantization of nonseparable sys-
tems. Since the only requirement is that the
appropriate tori must be found such that the
condition (7) is satisfied (it is necessary to replace
m, in (7) by (m, +a,/4) where o, an integer,
depends on the nature of the classical orbit), the
EBKM quantization rule can be applied to in-
tegrable as well as nonintegrable systems. In
recent times, many different practical methods of

Figure 5. The two independent paths on the 2-torus.
C, cannot be deformed in any way into C,, and vice-
versa.

implementing such a rule have been
developed 2¢: 21,

However, torus based semiclassical methods
runinto problems in nonintegrable systems when
chaotic motions occur—the integral in (6) is no
longer properly defined since the path C; cannot
be specified. For a Hamiltonian system such as
the Hénon-Heiles, this means that the higher
lying states cannot be quantized by a semi-
classical technique—chaotic motions occur
mainly at the higher energies in such systems.

There are alternate, non-semiclassical methods
by which the quantum mechanics of systems such
as (4) can be studied. The Hamiltonian operator

corresponding to the classical system is

— - —_— — — ¥ 3

H 2(6x2+5y2)+2(x +yI) Xy —y/3
\ J

(8)

= A, + H, (9)

The standard technique of diagonalizing H in the
basis of H, can be employed to give ‘exact’
eigenfunctions and eigenvalues. When these re-
sults are compared with the semiclassical ones it
is seen that the agreement is quite good for the
low-lying states; eigenvalues are correct to within
a few per cent, and the quantum eigenfunctions
occupy the same general region of coordinate
(x — y) space as the semiclassical tori.

In the energy range where the semiclassical
method fails due to the lack of toroidal motion,
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there are several quantum levels that can be
determined by the latter ‘exact’ procedure. A
natural question that arises 1s whether there is
any essential difference between the two types of
Guantum states—those that have a semiclassical
parallel, and those that do not.

Based on the classical-quantum correspon-
dence principle, Percival?® conjectured the exist-
ence of two different classes of quantum eigen-
states in systems that reduce to nonintegrable
ciassical systems 1n the limit. Termed, Regular
and Irregular eigenvalue spectra, these levels have
distinctly different properties, analogous to the
diflerence 1n properties of toroidal and chaotic
orbit motions. For regular states,

1) it 18 possible to identify n ‘good’ quantum
numbers (on a torus, it is possible to define n
‘good’ actions),

2) the eigenvalues are stable under perturbations

3) ‘strong’ selection rules operate—a given state
is strongly coupled to a small set of other

states, leading to a simple absorption spec-
trum of a few lines.

For irregular states, on the other hand,

[} 1t 15 not possible to identify any guantum
numbers (action variables are undefined for
chaotic motions),

2) eigenvalues are unstable and show large vari-
ations under small perturbations,

3) the absorption spectrum shows broad lines—
a given irregular state is weakly coupled to
several other states of similar energy.

Other distinctions can also be made, that deal
with the statistics of level spacings in the two
types of levels, with correlation functions, the
nodal patterns of the wavefunctions, behaviour
under collision conditions, the statistical pro-
perties of the Wigner phase-space distributions
associated with the two kinds of states, etc.

Several specific systems have been theoretically
examined and have shown this kind of distinction
to exist. Much of the concern in this area has
come from studies in intramolecular problems,
primarily since molecules are small quantum
dynamical systems and thus offer a possibility of
experimental verification. It must however be

mentioned that so far there have been no un-
ambiguous experimental studies” {in molecular
spcctroscopy, for example) that have been able to
unequivocally identify the presence of these two
cortrasting types of quantum states,

A case In point is the recent experiment of
Klemperer?? on the high overtone spectroscopy
of the HCN molecule. While the classical dy-
namics on the best available potential surfaces
shows extensive regions of chaotic trajectories,
the quantum energy levels, as measured by
accurate spectroscopic means show no irregula-
rities, or any of the properties associated with the
irregular spectrum. The relevance of classical
studies to an inherently quantum problem is not
entirely clear, but 1t suggests that other factors,
such as the role of the relative size of h, the
Planck’s constant, needs to be taken into account
as well, in applying the correspondence principle.

Marcus and co-workers?!:?4:25 have noted
that several of the properties of the irregular
spectrum could be ascribed to the existence of
several near-degeneracies in the eigenvalue spec-
trum. Specifically, it was seen that the eigenvalue
ts perturbation parameter plots for systems such
as

H = (pz+py +x*+y")2+ix*y—y*/3)  (10)

(which 15 the Hénon-Helles system rewritten 1n
terms of a perturbation parameter, A) showed
“avoided crossings” or “anti-crossings” rather
than actual crossings. When two or more states
are almost degenerate—when they undergo such
avoided crossings, then 1t 1s to be expected that
the irregular spectrum will ensue; the individual
states lose their quantal identity as typified by the
quantum numbers or the specific nodal patterns.
This, however, is a heuristic picture of quantum
chaos, although it has been seen to be true of
most reported studies of quantum trregular be-
haviour (figure 6).

More recently, it has been suggested?® that a
better candidate for observing quantum chaos
may be the system of a sinzle electron bound to
the surface of liquid helinm by its (weak) elec-
trostatic image charge. The removal of the elec-
tron from the surface by microwave radiation
proceeds via chaotic classical mechanics. and thus



Current Science, June 20, 1984, Vol. 53, No. 12

625

e

14 80

14 60

Figure 6. Plot of energy levels (eigenvalues) vs. per-
turbation parameter in a system similar to {10). Note
the erratic variation of the eigenvalues with 4 intro-
duced by the existence of avoided crossings.

the actual (quantum) experiment could help to
determine whether classical chaos does 1n fact
have a well defined quantum parallel.

It should be clarified that in quantum mecha-
nics indetermnacy is abundant—tiz position-
momentum uncertainty. This kind of indeter-
minacy, which is quite distinct from the quantum
chaos discussed 1n this section, 18 1ntrinsic to the
quantum nature of things. In the purely classical
case, systems of arbitrary complexity can be
constructed, such that the outcome of strictly
deterministic equations of motion 1s apparently
as random as may be desired. Whether a de-
terministic basis can in fact be provided for
quantum uncertainty is not clear® 2"

CONCLUSION

In this article a survey of some features of

classical chaos in conservative dynamical sys-
tems, and one particular aspect of current re-
search interest—quantum chaos—has been
given. Necessarily, there are omissions since the
scope of the general field of chaos Is vast.
Dissipative dynamical systems which find a wider
range of applications have not been treated here.
For these the classical theory, which 1s distinct

il

from the conservative case, 1s well substantiated
by a variety of experiments.

Nonlinearity, as has been iliustrated above,
often gives rise to complicated and unexpected
behaviour. At the same time, nonlinearity is quite
common, and by and large, a nonlinear system 1s
also nonintegrable. The very ubiquity of non-
integrable systems, and indeed that of chaos,
therefore makes a detailed study of such pheno-
mena imperative.
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NEWS

ENVIRONMENTAL BIOINORGANIC CHEMISTRY

A tripartite US-Italy-China conference on environ-
mental bioinorganic chemistry, took place in San
Mintato 1n June 1983. In addition, UK, Swiss and
Swedish delegates were also present.

Major topics of the conference included pollution
caused by heavy metals, in particular, by toxic and
carcinogenic metals such as mercury, cadmium, lead
and arsenic; environmental damage caused by
radioactivity from nuclear plants or from the recycling
of nuclear materials; environmental damage in the
Mediterranean sea and other marine environments:
and the problem of acid rain. The scientific bases of the
toxicity of heavy metals in living organisms were also
considered.

The main priorities of the conference were to
correlate the directions of research, and encourage
international cooperation between Italy, the US,
China and other countries, since there is a great deal of
concern for the protection of the environment and for
the possible damage which can be caused by heavy
metals. Within this context, it is necessary still to learn
a great deal about the chemical basis of toxicity, i.e. the
chemical reactions that lead to inflammation, cell
degeneration and irreversible damage to the nervous
system. Such problems are aggravated by the fact that
different animals respond in different ways to toxic
stress. For example, the mouse eliminates arsenic in a
different way from the rabbit. This is because the

mouse has a blood protein that can coordinate directly
with arsenic and can then eliminate it through normal
blood exchange.

Genetically manipulated algae and bacteria can be
designed to remove copper, nickel, silver and uranium
very efficiently. Progress is being made in increasing
the selectivity of particular metals, Work at Berkeley
has resulted in complexing agents that can selectively
remove extraneous metals from living organisms and
radioactive metals from blood.

Another objective in ¢environmental management is
the control of salinity which, for example, has been
studied both in Padua and Sheffield. Such environ-
mental problems have major economic repercussions,
[t has been argued for example, that if internationat
industry could invest 2 per cent of its turnover in the
recuperation and recycling of dangerous substances,
the final benefit 1o society would be at least 10 times
greater than the initial investment.

The Conference was sponsored by the Ilialian
National Council for Research, and the National
Science Foundation of Washington. One of its main
atms was to correlate directions of research between
the three main countries involved so that the wastage
of the scarce manpower and funding way be avoided in
the future. (Chemistry in Britain, December 1983,
p. 1016).




