particular brood is completed in more than one step, keeping a part in the unmerged brood pool in the form of diapausing larvae (figure 1). This probably helps these bees to tide over any sudden and unpredictable violent environmental catastrophes.

The author wishes to thank Dr R. P. Kapil, for necessary facilities.

7 March 1983; Revised 24 January 1984


THE VOLUME OF THE CORPORA ALLATA IN RELATION TO VITELLOGENESIS IN THE BUG *LEPTOCORIS COIMBATORENSIS* GROSS (HEMIPTERA: COREIDAE)

AMARJIT KAUR, B. KISHEN RAO, S. S. THAKUR and SABITA RAJA
Department of Zoology, Osmania University, Hyderabad 500 007, India.

Insects like *Cimex lectularius*, *Oncopeltus fasciatus* and *Rhodnius prolixus* the egg maturation is controlled by the corpus allatum\(^1-3\). During yolk deposition in the oocytes in *Rhodnius prolixus*, the size of the corpus allatum increases\(^4\). Similar correlation between the egg maturation and the increased cytoplasmic volume of the corpus allatum has been found in other hemipterans, coleopterans and hymenopterans\(^5-8\). Generally the gland size is correlated with the quantity of the gonadotrophic hormone produced and its high activity.

This communication deals with the relationship between the volume of the corpora allata (CA) and vitellogenesis, in *Leptocoris coimbatorensis*.

The experimental insects were reared at 30 ± 1°C and RH of 65 ± 5%. They were fed on soaked soapnuts. The freshly eclosed adults were treated with 1 µl of 0.01 µg of hydrocarbons per insect. The ovaries of the control and treated insects were processed for histological studies. The volume of the CA of these insects was measured with a stage micrometer and the volume was calculated using Tobe & Pratt’s procedure.

Corpora allata are generally paired. In *Leptocoris*, it is unpaired and oval shaped located within the head capsule, posterior to the brain and the corpora cardiaca. The size of the corpus allatum and the stage of development of the oocytes are closely related. Vitellogenesis in the control bugs commences on the second day and continues up to the fourth day, when the oocytes are fully laden with yolk. During vitellogenesis in the controls, the follicular epithelium changes its shape from columnar to cuboidal and then to squamous form, in accordance with the size of the oocyte. The incorporation of the yolk into the oocytes takes place through the intercellular spaces of the follicular epithelium.

The volume of the CA observed was 0.69, 0.79, 0.82, 1.5, 2.53 and 1.1 ml in the 0, 1, 2, 3, 4 and 5 days control adults respectively. This showed that the volume of CA increased gradually up to the fourth day after which it declined, thus coinciding with the oviposition.

In the treated adults the ovaries showed initiation of yolk deposition but on the third day and onwards there was osorption. The cells of the follicular epithelium did not differentiate as in the controls. The volume of the CA was also considerably different being 0.69, 0.79, 1.2, 0.51 and 0.45 ml in the 0, 1, 2, 3, 4 and 5 days old treated adults respectively. This shows that with the decrease in the volume of the CA further progress of vitellogenesis was prevented (figure 1).

From the above cited results we see that the volume of CA increases up to fourth day and on this day the yolk deposition is almost complete in the controls, thus showing that JH controls vitellogenesis. Application of hydrocarbons resulted in the fall in the volume of CA.
ON THE INTRACEREBRAL NEUROHAEMAL ORGAN IN ADULT POEKILOCERUS PICTUS (ORTHOPTERA: ACRIDIDAE)

OM PRASAD and V. K. SRIVASTAVA*
Department of Zoology, University of Allahabad, Allahabad 211 002, India.
*Present address: V. K. Srivastava, Assistant Research Officer (P & I Division) Indian Council for Medical Research, New Delhi 110026, India.

The phenomenon of neurosecretion and types of neurosecretory cells in the brain of insects have been extensively studied. Some description have mentioned the presence of neurosecretory droplets in the protocerebrum outside the paired axonal tracts. Some times they are confined within the fine fibers which leave main axon tracts and re-enter after a short detour. Some times the granules are present but the fibers are difficult to see. The presence of neurosecretory granules in the walls of spaces has also been reported in Carausius morosus and Locusta migratoria. Here the amount of neuropil neurosecretion is so much that the region has been called a reservoir. In the present investigation paired axonal tract from the median neurosecretory cells after decussation were seen entering in a circular structure situated on the ventral side of the tritocerebrum close to the neurolemma before leaving the brain. A brief description of this structure and its possible role as neurohaemal organ has been discussed.

Adult P. pictus of both sexes were picked from the stock rearred in the laboratory at 28 ± 2°C. Their brains were dissected out in insect Ringer’s solution and fixed for 18-24 hr in aquous Bouin’s fluid. 6 μ thick serial paraffin sections were cut and stained with Paraldehyde fuschin (PF) and Chromahaematoxylin-phloxine (CHP) stains.

Four groups of neurosecretory cells, two on either side of the mid-line were seen in the median dorsal region of the parsintercerebralis (figure 1). They were distinguishable into two types, A and B, on the basis of their staining reactions (figure 2). The A cells stained purple with PF and blue black with CHP. The B cells were PF and CHP negative and took green and red colours of the counter stain of PF and CHP respectively.

Bundles of axon fibers arise from each group of NSE. Axons of the two group of each hemisphere unite and form Nervi Corporis Cardiaca (NCC 1) on each side before entering the neuropile (figures 1 and 3). Axon tract of both side then cross one another and pass vertically downward. Each tract continues forward.

Figure 1. Graph showing the relation between the volume of CA and vitellogenesis in the control and treated adult. nl = nano litres.

leading to oosorption of the oocytes. Thus the juvenile hormone analogue hydropropen inhibited the secretion of JH by the CA. Hence we conclude that an optimum supply of JH is necessary for vitellogenesis and any variations in the titre of JH will lead to changes in the development of the oocytes.

The authors are grateful to Prof. P. Narayan Rao, Head, Department of Zoology for the laboratory facilities. Dr Amrit Kaur acknowledges the CSIR for financial assistance.

29 November 1983