
NUCLEOLAR AMPLIFICATION DURING METAXYLEM DIFFERENTIATION IN ROOT MERISTEM OF ALLIUM CEPA VAR. VIVIPARUM

ANIMA LANGER and A. K. KOUL
Department of Biosciences, University of Jammu, Jammu 180 001, India.

The Srinagar clone of Allium cepa var. viviparum is triploid ($2n = 3x = 24$) but it has a single nucleolar chromosome$^{1-3}$. Accordingly, the interphase nuclei organise a single nucleolus. While squashing root tips of some plants raised in experimental plots, a few nuclei were found to display substantial variation in the number as well as size of nucleolus. Some were found with an exceptionally enlarged nucleolus. Others displayed nucleolar budding. A few cells had binucleolate nuclei (figures 1–4). Differential nucleolar condition in various zones of developing roots is

Figures 1–4. 1–3. Parts of longitudinal sections of roots of Allium cepa var. viviparum. Note the presence of binucleolate nucleus in central row (figure 1) 2–3 show large and irregular nucleoli in the same region. 4. A row or cells, showing the phenomenon of nucleolar budding. (scale – 10 μm)
on record4–6. In order to determine whether the variation in nucleolar condition referred above has also some such significance, serial microtome sections of developing roots were studied after staining them with Mallory's triple stain. Significantly, the cells with a single but enlarged nucleolus, those showing nucleolar budding and binucleolate condition were found to constitute a single row in the centre of the root. By virtue of their size, appearance and position, they represent metaxylem initials. Nucleolar studies on Zea mays4 and Pisum6 indicate that during root differentiation, nuclei of different regions vary with respect to nuclear size. They have recorded that nuclei of the stelar region contain largest nucleoli. Numerical increase in nucleoli is also on record in metaxylem initials6. These authors report that in place of the normal count of two nucleoli per nucleus, some cells of Allium cepa carry as many as three. Another similarity between this and the present report is the occurrence of nucleolar budding in some root tip cells (figure 4). These authors attribute nucleolar budding and consequent increase in nucleolar number to the extra replication of nucleolus associated DNA within developing xylem cells. Using cytophotometry and autoradiography they have demonstrated six-fold difference in nucleolar material of these cells and the ones neighbouring them. Measurements of nucleolar surface area indicate that even in the present case amplification of nucleolar material is six-fold. Thus, while nucleolus measures 89.6 μ^2 in surface area in neighbouring cells, individual nucleoli of the binucleolate nuclei are as large as 234.8 μ^2.

The authors are grateful to Prof. Y. R. Malhotra for providing facilities and to CSIR. New Delhi for financial help.

23 August 1983

OCCURRENCE OF IMPIETRATURA DISEASE OF CITRUS IN INDIA

Y. S. AHLAWAT, V. V. CHENULU,
N. K. CHAKRABORTY*
and S. M. VISHWANATH
Division of Mycology and Plant Pathology,
Indian Agricultural Research Institute,
New Delhi 110 012, India.
*Present address IARI Regional Station, Kalimpong (WB), India.

In 1973, during a survey for virus diseases of Citrus in Darjeeling district of West Bengal, a 15-year old tree of Pummelo [Citrus grandis (Linn) Osbeck] at Churchill Ville, Kalimpong was observed to bear abnormal small fruits. These fruits never developed to normal size and became stony-hard, lop-sided and often fell prematurely during June-July. The fruit bearing branches had depressed brownish spots. There were gum deposits under such spots on the wood. During further surveys in June 1974 and 1975, the incidence of the disease was observed upto 15% at Kalimpong and 3% at Gyalings, Sikkim. No fungus or bacterium could be isolated from the affected branches.

Five 3-year old seedlings of each Washington navel, pummelo and grape fruit inoculated by bud grafts, from naturally affected plants showed typical bark-lesion symptoms after 3 years in a glasshouse. To obtain quick transmission of the disease agent and establish fruit symptoms, four diseased buds of pummelo were grafted on an apparently healthy pummelo tree in the field. Similarly four buds from a healthy plant maintained in the glasshouse were grafted on another field pummelo tree to serve as control.

Bark lesions developed on branches upon grafting with buds during the following year. Typical fruit symptoms of albedo gumming were observed three years later (figure 1B). However, on the control tree the branches remained healthy bearing normal fruits (figure 1A). Glasshouse inoculated plants also showed the fruit symptoms after seven years.

In the host range studies, typical symptoms of the disease were developed only on grape fruit, pummelo and sweet orange but not on lemon, lime and mandarin since they did not show any symptoms on back inoculation to grape fruit which is an indicator host.

The typical symptoms of the disease viz smalling, stony-hardness and albedo gumming of fruits, gum deposits in the wood of affected branches suggested the disorder to be similar to impietratura disease caused by a virus reported from Mediterranean region1–4. During a survey in 1980, typical symptoms