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ABSTRACT

The invariant-imbedding equation for the complex amplitude reflection coefficient p(L) = p,
+ ip, evolving stochastically in the length L of a disordered one-dimensional conductor is reduced
to a inear second order deterministic equation for the probability density P (p,, p,; L). The latter can
be used to calculate any averaged quantity of interest, in particular the average conductance using
the Landauer formula, and to discuss the fluctuations about the average. The latter has been a

subject of much discussion in the recent past.

HE one-electron eigenstates of a one-dimensional

(1-D}disordered system are known to be exponen-
tially localized for arbitrarily smaller disorder. This is
an exact theorem proved by several workers with
varying degree of rigour!-*, Exponential localization
implies that the typical resistance R{L) of the sample
should increase exponentially with the length (L). This
was shown to be indeed so for the ensemble averaged
pc resistance (R(L)) by Landauer® who derived a
remarkable expression for R{L) in terms of the
reflection (transmission) coefficient p*p (v*1) as

nh p*(L)p{L)

R{L) = "3 :r*(L)r{Li p*o+1*r =1, (1)

where the sample is assumed to be terminated by two
metallic reservoirs ensuring phase randomization and
hence irreversibility, This also avoided the problem of
non-zero level spacing due to fintte sample size L. (This
expression has been the subject of intense discussion
and debate in recent years and seems well established
for the strictly 1-D system, i.e. for 1-D, 1-channel case.
Generalization to the N-channel case has been possi-
ble®. The large N limit may describe a real thin wire)®.
An exponentially decreasing pc conductance {G(L)>
was obtained by Abrikosov and Ryzhkin’ starting with
a microscopic Hamiltonian with white-noise disorder.
Here the granularity of the finite size (L) level spacing
was treated by a certam limiting and averaging pro-
cedure. It was, however, soon realized that the con-
ductance depended on the mode of averaging as well as
on the definition®. Thus the arithmetic, the geometric
and the harmonic averages are all different implying
large fluctuations that grow with L and dominate the
average, i.e., the central limit does not obtain for R(L)
or G(L). It has been suggested and numerically sup-

ported that the geometric mean is the only physically
meaningful quantity implying. that InG obeys the
central limit theorem and 1s, therefore, the right scaling
variable®. Physically, the large fluctuations for the 1-D
system are understandable. Exponential increase of
resistance with L 1s due 1o the interference of the
mcident wave with the waves reflected from the
successive parts of the serially random conductor. This
1s a coherent effect as the scattering is elastic, and
therefore, different parts of the systerm may not
simulate different ‘instances’ of the system in the sense
of ensemble theory. Thus the resistance is not a self-
averaging quantity. (Of course, finite inelastic mean-
free path due to scattering by thermal phonons can
destroy the phase coherence and then the resistance
wil] be additive))

‘These considerations have motivated us to look for
an analytic solution for the probability density for the
resistance R(L) itself rather than evaluate some mo-
ments. This should constitute a comprehensive solu-
tion to the problem of fluctuations. Following the
imvariant imbedding® approach natural to such a
situation, the present author has been able to obtain a
solution to this problem, and a brief account of the
ideas and the derivations involved are reporied in this
paper,

The one-electron problem is completely described
by the Hamiltonian in

2
ixf K2 ¥ = 0, K2(x) = 23 (E=V(O) (2

h
where k(x) 1s the local wavenumber assumed to be
random and L the sample length. In the invariant-
imbedding appreach one directly addresses the emer-
gent quantity, namely the amplitude reflection coef-
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ficient p(L) that obeys the Riccati equation®

cp
cL

where f, (L) = 20Ink/¢L and fo (L) = k(L). Here we
shall always constder the case when &?(L) is positive
(i.e.the ‘refractive’ index is real and random so that any
localization is due entirely to the non-trivial wave
interference and not due to barrier penetration when
E < V(x). dince p(L) is complex it is convenient to
write p(L}) = p, (L) +ip,{L). Then, we have

=S (L) +2ifs p(L)~f1 (L) p? (L), (3)

cp (L)/OL = fi (L)~ 2fo (L) p (D)=, (L)} (o} —

0P (L)/OL = 2fo (LY p, (D)~ 2f, (L) p, (L) p; (L). (S5)

p3), (4)

In order to evaluate the probability distribution P (p,,
p2; L) we now mtroduce a dust of phase points of
density p(p;y, p3; L) in the 2-D (p,, p,) phase space
evolving with “time” L subject to the “initjal” sub-
semble condition that p({l) =0 for L = Q. As for the
phase angle 8 =tan~! p,/p,, we may take it to be a
circular ensemble uniform in the € space. The phase
fluid will evolve according to the stochastic Liouville
equation'®

ap 0 ﬁp dpgy O ( 692) )
oL~ ap \" oL ) ap, \" oL
where dp /0L and 8p, /6L are given by the stochastic

differential equations (4) and (5)- Now we have the
well-known result!®

P(py, p2s L) = {plp1,p2: L) s, (7)

where the average 1s with respect to the basic random-
ness variables f; and f;. Now the circular angular
ensemble persists in [ and the terms on the right side of
(6) involving f, cancel out, leaving f, as the basic
random variable in the problem. Without much ado we
take f, to be a Gaussian white noise process. This is
physically admissible since it is proportional to the
derivative Ok (L)/@L rather than just k(L). Thus, p(p,,
p3; L) s a functional of the Gaussian random variable
and one has, therefore!!,

S (LY ploy, p2; L)y = {AL' fi (DS, (L))

5pd A2 op
S =" Gwa»  ©
wherg we have used
ML (L)) = A8 (L - L), (9)

vyl — et - - P

This enables us to average (6) and obtain a closed
deterministic ¢quation for P{p,, p,; L). Following the
earlier procedure!!, we obtain

oP o P
—— = A2l — 3-——+ (1 -
Y Ar{l—r) - A“(1 —r)

2
x(]——Sr)—é~fr—)+2‘ﬂz(2r—l)P, (10}

where we have introduced the reflection coefficient r
= pi+ p? which is directly related 1o the resistance
through (1). This is a deterministic equation for the
quantity of interest P(py, p5; L), and constitutes the
ceniral result which the present author believes to be
first of its kind. We note that (10) is essentially a
Fokker-Planck equation. It has a regular singular
pointatr = 1 which dominates the behaviour for large
L when the reflection is nearly complete. It also has a
singularity (irregular) at r = 0. Thus the fundamental
domain 0 < r < | is bounded by two singularities, The
equation can be solved in terms of the eigenfunctions
of the associated eigenvalue problem. We wifl discuss
the explicit solutions in a detailed paper elsewhere, But
let us clarify a technical point here. The stochastic
equations (4) and (5) have the usual ambiguity for the
white noise randomness assumed. The above pro-
cedure corresponds to the Stratongvic procedure and
thus we avoid the Ito calculus completely!2. Another
point, of physical interest, is that (10) does not admit a
normalizable ‘steady state’ selution as L — o0, ob-
tainable by setting dP/3L = 0. This is, of course, as it
should be since the resistance cannot saturate as £,
— oo, Finally, we should note that the normalization
condition is

j P(py,pz; L)dpsdp; == fP(r,L)dr=1.

piapigl r<l

(11)
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ABSTRACT

The genus Nymphaea (L.) J. E. Smith supports a wide range of ploidy levels from 2 x (28) to 16 x
(224), both at inter- and intraspecific levels based on x = 14. The present study was essentially
aimed to unravel the nature of cytogenetic mechanisms underlying origin and evolution of
cultivated nymphaeas. The diploids, forming the core, are found in Africa and India, while the
polyploid taxa occupy much larger area are adapted to diverse climates. There is no correlation
between flower size and the ploidy level and the taxa are self- as well as cross-pollinated. Detailed
analysis of meiotic system indicates that the polyploids are allopolyploid in character, and the
present day garden nymphaeas are the result of repeated crossing involving about twelve elemental
species and selection extending for 100 years which took place in Europe and North America. The
main mechanisms underlying evolution are hybridization and polyploidy.

N YMPHAEA is a genus of water lilies which inhabits
the tropical and temperate regions of the world
and comprises of 50 species with numerous forms!.
The water lilies constitute an important element of
tropical aquatic ornamental horticulture because of
their strikingly beautiful flowers with wide spectrum of
colours. Nymphaeas attained their widespread fame
as ornamentals in Europe and North America in the
early 19th century when the highly coloured hardy
hybrids were gradually placed on the market. The
genus has been subjected to extensive hybndization
since about 1850, primarily for the development of
new ornamental cultivars?4 and the present-day
garden nymphaeas are the result of repeated crossing
involving about twelve elemental species and selection
of approximately 100 years which took place in
Europe and North America. The precise cytogenetical
understanding about the origin and evolution of
garden nymphacas from their wild relatives does not

exist. The present study is aimed to bring out these
events in relation to the nature of cytogenetic mechan-
isms underlying origin and evolution of cultivated
nymphaeas.

The genus Nymphaea has been divided into two
main sections viz Apocarpiae and Syncarpiae. The
former has been further subdivided into two sub-
genera viz Ancephya, Brachyceras while the latter into
three—Castalia, Lotos and Hydrocallis%>. As will be
clear subsequently out of 50 species, the species
relevant to the origin of the present day garden water
lilies are N, odorata Ait., N. tuberosa Paine., N. alba
var. rubra Lonnroth, N. tetragona Georg., N. pygmaea
Aiton, N. lotus Linn., N. rubra Roxburgh, N. caerulea
Savigny, N. capensis Thunberg, N. canzibariensis
Casp., N. flavo-virens Lehmann, N. mexicana
Zuccarini.

Morphological analysis of species and cultivars has
shown in general considerable variation in several



