Acetone will be more strongly held on an oxidised catalyst. Separate experiments on poisoning studies show that acetone strongly inhibits the reaction. Hence the desorption of acetone can be considered to be the rate-determining step. The competitive adsorption of acetone and 2-propanol shows that the active sites for the adsorption of acetone and the adsorption of 2-propanol are the same.

When Fe$^{+2}$ is surrounded by Fe$^{+3}$ ions there would be delocalisation of electron charge from Fe$^{+2}$ to Fe$^{+3}$ resulting in acetone, which is adsorbed by a donor mechanism, being held strongly to the surface. This results in a reduction in the adsorption of 2-propanol. When the number of Fe$^{+2}$ ions present in the vicinity of the point of adsorption is large, the desorption of acetone becomes easier. Therefore, the reduction of the catalyst increases the activity of the catalyst for dehydrogenation and oxidation reduces it. A used catalyst shows more activity than a fresh one.

K.B. is grateful to the Department of Atomic Energy, Bombay for the award of a fellowship.

11 August 1983; Revised 13 October 1983

PHOTOCYCLIZATION OF 2'-HYDROXY-3'-BROMO-5'-METHYLCALCHONE

G. C. DUBEY, P. B. GANDE, SUBHA JAIN and M. M. BOKADIA
School of Studies in Chemistry, Vikram University, Ujjain 456 010, India.

The photocyclization of stilbene and N-benzylidene-anilines, N-(2-propylidene)-2-aminobiphenyls, pyridiniumlyle, transnitrones, azobenzene, 4-phenylvinyl-2-pyridones, N-2-alkenyl and N-3-alkenyl phthalimide and flavone has been studied and reviewed by various workers.

In the present study the photocyclization of 2'-hydroxy-3'-bromo-5'-methylchalcone has been reported.

2'-hydroxy-3'-bromo-5'-methylchalcone, benzophenone and ethanol were chemically pure. The chalcone (200 mg) was dissolved in ethanol (50 ml) and benzophenone (0.5 mg) was added to this solution. It was made alkaline by adding five drops of NaOH solution (0.1 M) and irradiated with a medium arc lamp (Phillips, 80 watt) kept at 8 cm. After 10 hr, a solid started separating out from the reaction mixture and the separation was nearly complete after 15 hr.

The solid was filtered, washed with ethanol and recrystallized from benzene [yield 90 mg, m.p. 228°C and mole formula $\text{C}_3\text{H}_3\text{O}_2\text{Br}$. It gave a positive test for bromine.

$$\text{UV (}\lambda_{\text{max}}\text{) = 276, 255 and 244 nm.}$$

The UV spectrum of the parent compound showed a peak at 322 nm indicating the presence of a conjugated system which had shifted towards shorter wavelength (276 nm) in the product, showing the disappearance of conjugation.

$$\text{IR (KBr)}cm^{-1} = 3420, 2920, 1700, 1640, 1600, 1470, 1385, 1265 and 1150. $$

The IR spectrum of the product resembles that of the parent compound except for a slight shift towards larger wave numbers and the strong absorption at 1700 cm$^{-1}$ which may be attributed to a cyclopentane ring.

The mass spectrum (m/e 316) indicated the formation of a compound with the same molecular weight. Other intense peaks obtained were at m/e 217 and 77 (Scheme 1).

The effect of photon in the photocyclization was confirmed by carrying out the reaction in the absence of UV radiation when no product was formed. In the
absence of benzophenone the yield was extremely poor. This clearly shows that benzophenone acts as sensitizer. On addition of alkali, the yellow colour changes to reddish orange. However, in the absence of alkali, the substrate did not dissolve and there was no reaction.

The spectral data of the product suggest that the reaction involves synchronous hydrogen migration from C_6 to α-carbon following by bond formation between C_6 and β-carbon atom (Scheme 2).

Mechanism

This intramolecular photocyclization of 2'-hydroxy-3'-bromo-5'-methylchalcone may be explained by a free radical mechanism. The primary photoprocess may proceed by hydrogen radical at α-carbon atom, followed by cyclization between C_6 and β-carbon atom (Scheme 3). The scope, the limitation and the detailed mechanism of this reaction are under investigation.

The authors thank Dr. P. K. Ramachandran, Director D.R.D.E. (Gwalior) for providing mass spectral facilities.

2 May 1983; Revised 19 October 1983

KINETICS AND MECHANISM OF THE CHLORINATION OF 2-METHYL PHENOL BY SODIUM N-CHLOROBENZENESULPHONAMIDE IN HYDROCHLORIC ACID MEDIUM

B. N. USHA, H. S. YATHIRAJAN and RANGASWAMY

Department of Chemistry, University of Mysore, Manasagangotri, Mysore 570006, India.

The kinetics of oxidation of substituted benzyl alcohols¹, unsaturated alcohols²,³ and dimethylsulfoxide⁴ by chloramine-B (CAB) have been reported.

2-Methyl phenol (Naarden, b.p. 191°C) was distilled under reduced pressure. The requisite amount of phenol was accurately weighed and dissolved in ethanol. Aqueous solution of chloramine-B was standardized by iodometry. All the other chemicals used were of analytical grade.

The kinetic studies were carried out at an ionic strength of 0.5 M (using NaClO₄) at 35°C under pseudo first order conditions. The reaction rate was determined by estimating the unreacted CAB iodometrically. The stoichiometry of the reaction was 1:1 and the product was 2-chloro-6-methyl phenol as shown by TLC.

The reaction can be represented as:

\[C_6H_5SO_2NClNa + H_2CC_6H_4OH + H_2O \rightarrow C_6H_5SO_2NH_2 + H_2CC_6H_5ClO + NaOH \] (I)

At constant \([H^+]\) (0.05 M) and [phenol] (0.1 M), a first order dependence of the rate on [CAB] (0.003-0.007 M) is noted. The pseudo first order rate