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EXTINCTION EFFECTS IN CRYSTALS*
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ABSTRACT

The current state of the art regarding treatment of extinction effects in crystals is reviewed. The
physical resonableness of the extinction parameters resuiting from least squares refinement of

crystal structures is examined.

INTRODUCTION

XTINCTION effects in measured diffraction inten-
E sities and their corrections have been one of the
important problems in structural crystallography.
Nevertheless, until recently, the problem of extinction
correction was not taken seriously by most crystallog-
raphers and strong extinction-affected reflections were
rejected outright from the observed data sets.
However, this approach is undesirable in high precis-
ton diffraction studies of current interest.

Historically, the treatments of extinction have been
based on two distinct concepts originally proposed by
Darwin', namely, those of primary and secondary
extinctions. Darwin postulated that a real crystal could
be considered to consist of a great many small perfect
blocks or domains which are tilted very slightly relative
to one another. The power loss suffered by the incident
x-ray beam due to diffraction within one ideal crystal
block is termed as primary extinction, while the
cumulative power loss in the blocks traversed by the
beam before 1t reaches a particular block under
consideration is referred to as secondary extinction. A
mosaic crystal 1s said to be ideally imperfect if the
primary and the secondary extinctions are negligibly
small for all reflections. A comprehensive account of
the theoretical aspects of the early treatments of
extinction has been given by Zachariasen?. He has
shown that for the primary extinction to be negligible,
the path length  in a single domain must be very small
compared with the extinction length, A(= V/Fi)
where V is the volume of the unit cell and F is the
structure factor. For secondary extinction to be negli-
gible, the mosaic spread must be large compared with

(Q//2n p) and {4/t sin20) where Q is the kinematical
integrated reflectivity per unit length and u is the linear
absorption coeflicient.
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* This article was prepared on the occasion of Prof. G. N.
Ramachandran’s Sixtieth birthday which was ceicbrated

recently.
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Zachariasen? has derived the expressions for the
integrated reflecting power in different diffraction
geometries for absorbing and non-absorbing crystals
based on Darwin’s theory® which deals with crystals
of infinite  thickness. Before Zachariasen,
Ramachandran® had already derived the fundamental
equations for the amplitudes of the reflected and
transmitted waves from crystals of finite thickness by
combining Darwin’s® recurrence relation approach
and Lord Rayleigh's® theory for the reflection of light
from a regularly stratified medium. This new Rayleigh-
Darwin formalism due to Ramachandran was el-
egantly able to resolve® some of the apparent differ-
ences? in the results of the Ewald and the Darwin
theories. Ramachandran further extended his work to
obtain expressions for the integrated intensities of
mosaic and perfect absorbing crystals under various
conditions {for the Bragg case) and obtained many
results of practical utility’. He also proved® that for
weakly reflecting thin crystals, the integrated reflecting
powers as calculated by the dynamical theory and the
kinematical theory are identical. This implies that one
cannot easily distinguish between the weak primary
and secondary extinction effects.

Since the polarisation dependence of integrated
intensity 1s different for the perfect and the ideally
mosaic crystals, it is possible to examine the degree
of perfection 1 crystals using polarised x-rays.
Ramaseshan and Ramachandran® were the first to
demonstrate expenmentally that the polarisation
factor of a reflection depends critically on the state of
perfection of the crystal. Subsequently, this aspect was
pursued theoretically by Chandrasekhar!®!? who also
demonstrated experimentally that polarised x-rays can
be used to obtain the true value of the structure factor
in the presence of extinction in a crystal of any shape
and without having to make any special assumpfions
regarding the nature of extinction.

In view of the extensive work done by Prof G. N.
Ramachandran and his colleagues on perfection of
crystals, particularly in relation to the dynamical
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theory of x-ray diffraction'?, we felt appropriate to
write this article on the occasion of Prof.
Ramachandran’s sixtieth birthday.

EXTINCTION CORRECTIONS IN
STRUCTURAL CRYSTALLOGRAPHY

Although there were many treatments of the type
described in the last section for correcting the extine-
tion effects, none of them was convenient for use
tn routine crystal structure determinations, The
first breakthrough in this direction came when
Zachariasen'® proposed an approximate closed form
solution to the Darwin energy transfer equations:

oI,

w5 = — @+l tal,
él,

= = (5 I.4+cl 1
2s, (@+p)l, 40l (1)

where the incident and diffracted intensities, [, and i,
are functions of positions within the crystal specified
by coordinates S, and S, along the incident and
diffracted directions and depend on the divergence
angle ¢ of the incident beam from ideal Bragg con-
dition, and a{e} 1s the average effective diffracting
power. The correction for secondary extinction Y,
defined as the ratio of the integrated power P of the
diffracted beam to its kinematical limit P, 1s evaluated
as

L, { +2X ) 2+ K21 4 2K2X )12
’ (1+K?)

(2)

where, K = cos 28 for x-rays and = 1 for neutrons

Xp = (21/3)Q0a*fu
T, = (1/A(W) [ (T} + T} exp
[ =l +13)]dv,
a* = a/[1+(20/39)?]"",
a=t [A

The quantity ¢, is the mean domain thickness per-
pendicular to the incident beam (= 3r/2 for spherical
domains}, and g 1s related to the width of the mosaic
spread distnibution. Crystals for which r » Ag are
classified as type I, while those for which r < Ag as type
1. To obtain the above solution for ¥, Zachariasen
had assumed. (1) The effects of absorption and extinc-
tion could be separated. It must be mentioned that
Werner et al'* had already worked out a more exact
solution without having to separate the two effects, in
the form of an Infinite series of Bessel functions. (ii)

The power diffracted in the direction can be expressed
as

P(e) = Iova(e)d (),
$(3@) = (1+8T)" %,
a(e) = (o (s + A)W(A)dA,

where W(A) describes the misorientation (A) distri-
bution of the mosaic blocks.

LIMITATIONS AND MODIFICATIONS OF
ZACHARIASEN'S THEORY

Chandrasekhar et al’® were the first to verify the
polarisation dependence of Y and to suggest an
experimental method for determining the extinction
factor. Many workers have examined the validity of
Zachariasen's theory and pointed out its limitations.
Its main himitations are (i) It underestimates severe
extinction!®!’, (ii) It does not satisfactorily account
for the angle and wavelength dependence!®. (iil) It
does not take account of the dynamical interactions
responsible for primary extinction’8,

A number of workers have also attempted to modify
or revise Zachariasen’s theory. Cooper and Rouse!®
tried to improve its angle dependence by introducing
an analytical function of X and sin 4. Coppens and
Hamilton!® extended it to include anisotropic extinc-
tion effects. Sequeira et al' 7 suggested an empirical but
casily programmable modification of the type

Y = [1+2x+ax?] -4 (3)

which was found to give quite satisfactory corrections
upto values of Y as low as 0.06 observed in L-glutamic
acid HCL (see figure 1).

A notable revision has been due to Becker and
Coppens®®2! who suggested that (a) The domain
radius r should be replaced by (r sin 28). This implies
different angle dependence for type 1 and type II
crystals and hence possible distinction between the two
even when extinction is isotropic. (b) In order to
correct for primary extinction effect, the value of & in
the Darwin transfer equations is damped by Y, which
is calculated for diffraction by an average block. The
combined extinction correction can then be evaluated
as

Y=Y,(X)Y, {¥,X) (4)
with
X, = (2/3)Q,(t)> 2" 1 sin 26

Our results discussed in the last section (tables 1, 2)
seem to favour the introduction of Y, but do not
favour the replacement of r by r sin 26.
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EXTINCTION CURVE FOR L-GLUTAMIC AGID. HCL
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Figure. 1. Average observed F3/F? values and the
extinction curve calculated using the cxpression
Y = [1 +2x 4 ax?] ¥ for L-glutamic acid. HCL.

The formalisms discussed so far are essentially based
on Darwin’s primary and secondary extinction con-
cepts which imply the presence of completely coherent
or incoherent waves. The partly coherent and partly
incoherent nature of waves in real crystals is presumed
to be taken care of by the mosaic crystal model which is
inadequate for a wide range of degree of imperfections
existing in real crystals. Kato?2~2* has recently de-
veloped a2 new theory which incorporates both co-
herent and incoherent processes associated with dif-
fraction of waves in crystals without any a prior
assumptions. The theory offers new possibilities for
developing extinction corrections based on a more
realistic description of the distorted crystal.

KATO'S STATISTICAL DYNAMIC THEORY OF
EXTINCTION

Kato’s formalism is based on the postulation that
the observed intensity is an ensemble average of the
dynamical intensities evaluated wusing Takagl-
Taupin?® equations of the type

¢ Dy

—=i K D,~ D
25, y @ D, ‘%P 0,

i el _— 2

¢D,
as*"'fKn‘i’*Du“'%#Dh- (5)
h
where D, and D, are the wave fields of the direct and
reflected waves, K, is the dynamic reflection coef-
ficient per umit Jength, and ¢ = 2ni h u is the lattice
phase factor which depends on the displacement vector
u (r)for the distorted lattice relative to a perfect lattice,
These phase factors are constant for a perfect crystal
but have to be evaluated by statistical averaging for a
real crystal. In order to evaluate the measured in-
tensity, a second order correlation function, f{z)and a
correlation length ¢ are introduced;

f(z)= (P Q) ¢* ) = {¢" 0) ¢ (2},
=E*+(1-E*g(2) (6)
where z is the distance between two scattering points in

the crystaland E = (¢ ) = {(¢*),1s zero for an ideally
imperfect crystal and = 1 for a perfect crystal.

T = f g (z)dz. (7}

0

Kato has obtained the solutions for (5) assuming
t€A =k k_,| 4

and shown that the coherent component, [
(= { D, >*) of measured intensity is governed by the
following equations

d {D
—-—< O>""E.Ek-—ﬁ (Dh>"i'l"n <Dﬂ>*
d S,
¢ {D
O Bk (DY —iu. <D, ®)
d S,
while the incoherent components obey the equations
ali} — { — ? 2
— =~ I+ @I 4o, (1 -EI],
g Sp
a1y = ¢l = Ji 2y I¢
- "P,I};""‘ﬂhlﬂ'l"ﬁh(l_E )} I'o, (9)
7S,
where

#, = u+2(1 —E¥rRe (k%)

0 =2k, 0

G ,5=2 kP [(L~EYz+EA]
i, = u+2[(1 —E})r+ EA] Re (k%)
k* ==k, k_y.
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It is possible to evaluate the parameters E and t if some
statistical model of the crystal is given and hence to
predict the measured Integrated intensity and the
extinction factor. It also seems possible to extend the
method of solution to cases where 1t > A, the extinc-
tion length.

PHYSICAL REASONABLENESS OF THE
EXTINCTION PARAMETERS

Although 1t 1s now possible to correct extinction
effects in diffraction data rather precisely and routinely
using the Zachariasen’s theory or some of its modifi-
cations, the physical reasonableness of the derived
extinction parameters has often been in doubt. We will
now examine this aspect for the refinement of accurate
neutron diffraction data on two different crystals, by
comparing them with the direct estimates of the
domain sizes from x-ray topography and mosaic
spreads from multicrystal diffractometry.

KCl Crystal: The neutron data set consisting of 54
reflections 1n an octant of reciprocal space was re-
corded mn 0-20 mode from a crystal of size 2.2 x 2.6
x 42 mm?> using a computer-controlled diffracto-
meter at Trombay*?’. The data were moderately af-
fected by extinction (Y = 0.7). The results of refine-
ment based on various extinction models are given in
table 1.

It 1s clear from these results that it is not possible to
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choose between the primary and secondary extinction
models. When the parent crystal was examined by
multicrystal diffractometry (MCD) and x-ray topo-
graphy?®, a mosaic spread of 14 min of arc (FNHM) and
an average particle radius of 8 microns were indicated,
supporting the parameters resulting from the primary
extinction model.

L-glutamic acid. HCI: The data set*® consisting of 639
independent reflections (1 = 1.406 A) was severely
affected by extinction (Y_ = 0.06). The positional
and anisotropic thermal parameters were refined along
with a scale factor and isotropic extinction parameters.
The R-values and extinction parameters resulting from
vartous models are summarised in table 2.

Models (1c), (1d), (2b) and (3) all yielded consistent
structural parameters while models (1a) and (1b) were
yielding non-positive definite thermal parameters for
some of the atoms. The equivalent mosaic spread
(=~ 1sec of arc) resulting from models (1c), (2) and (3)
was much too small when compared with the value of
45 sec obtained from multicrystal diffractometry?8,
However, a constrained refinement (model 1d) using a
g-value of 0.29 (corresponding to 45 sec mosaic width)
yielded a particle radius of 133 microns which was
consistent with the x-ray topographs.

CONCLUSION

The studies on perfection of crystals using x-ray

Table 1 Results of KCl refinement from various extinction models

Avg.
particle
radius (rms)
Model R-Factor(F) B(K)A? B(CHA? (mucrons)
1. Isotropic primary 0.0152 1.82 1.99 13.5
(Zachariasen)
2. Isotropic pnmary 0.0168 1.57 1.76 21.3
{Becker and Coppens®)
3. Isotropic secondary 0.0154 1.83 1.87 0.12
4. Anisotropic primary 0.0067 1.82(3) 1.89(3) 10.5
(Zachariasen)
5. Anisotropic primary 0.0097 1.83 1.94 —
(Becker and Coppens*)
6. Anisotropic secondary 0.0098 1.83 1.87 —
{(Zach. Type I)
7. Anisotropic secondary 0.0066 1.80 1.86 0.10
(Zach. Type II)
8. Anisotropic secondary 0.0118 1.70 1.81 —

{Becker and Coppens*)

® Replaces particle radius r by (r sin 28).
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Table 2 Results of L-glutamic acid. HC refinement

S —

Exuinction Parameters

Isotropic R-Factor(F) -
Extinction Model (No-639) g x10~¢ r (microns)
l. Zachariasen

a) Secondary 0.0530 17.1(1.3) —_

b) Primary 0.0542 — 178(8)

¢) Secondary 4+ Primary 0.0478 9.5(1.0) 24(1)

d) -do- (Constrained) 0.0489 0.29 133(4)
2. Becker & Coppens

(Type I Lorentzian)

a) Secondary 0.0493 10.1(0.6) —

b) Secondary + Primary 0.0475 8.5(0.6) 29(2)
3. Modified Zachariasen

Y=[142x+ax?"1 0.0475 $59(0.8) a=0.12(0.01)

e e, - -

topography, y-ray diffractometry and other technigues
are assuming added importance in recent years due to
both its technological importance and to its providing
a realistic picture of the defect structure in crystals,
There have also been many important attempts to
theoretically predict the effects of perfection—or the
lack of it—on x-ray and neutron diffraction from
crystals. In these studies, Prof. G. N. Ramachandran
and his colleagues have played a notable part. In the
current state of the art, one can say that the extinction
parameters obtained from least squares refinement of
crystal structures give a realistic description of the
mosaic structure of crystals if the extinction effects are
not too severe and if the choice of the ¢xtinction model
is supported by topography or rocking curve
measurements.
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MICROTOPOGRAPHY ON THE ZIRCON MEGA CRYSTALS FROM PUTTETTI, SOUTH INDIA
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ABSTRACT

Zircon mega crystals of unusually large size and morphological perfection are associated with a
diopside-syenite at Puttetti. They have wormy noodle-like microtopographic furrows on all faces.
Though lacking in geometric definition, they seem to have a preferred orientation on the prism and
pyramidal faces. A preliminary study of the crystal surfaces suggest that the microtopography is the
result of dissolution by fluids at the solid-liquid interface, at the prevailing magmatic temperature
and pressure. Scanning electron microscope studies revealed numerous sub-microscopic fractures
within the furrows, filled by a greyish-white cryptocrystalline matter. Step-like terraces on the
apparently flat interspaces between the furrows indicate crystal growth by layers.

INTRODUCTION

ICROTOPOGRAPHIC f{ecatures relate to the con-
M ditions of growth almost at the end of the growth
process. Crystals of minerals often show such features
and they are the result of dissolution by natural fluids.
Very often they show geometric form and the apparent
symmetry 1s consistent with the orientation of the
symmetry elements of the whole crystal®. A crystal face
is never ideally planar over thousands of identity
pertods, but contains a multitude of imperfections.
There are also other variations from ideality such as
foreign inclusions and dislocations®. The growth
mechanism of the crystal can be worked out by
correlation of the detailed microtopographic studies of
different habit faces of a number of crystals. The
existence of internal impurities and/or dislocations
will, to a great extent, affect the surface patterns
developed by growth process. While impurities and/or
dislocations on the surface of a growing crystal retard
1ts growth, during dissolution they will be centres of
the more unstable points on the surface of the crystal.
Hence at these points the solvent can prize open the
less yielding lattice front and cause development of
microtopography®. The first direct proof that dislo-
cations can be revealed by means of etching was given®.

Geologic Set-Up

Zircon phenocrysts occur in a zircon-bearing diop-

side syenite at Puttetti, in the Kanyakumari district of
Tamil Nadu (8° 14" & 77° 12'—Survey of India topo
sheet 58 H/4). The syenite body is in the form of a ridge
(0.4 x 0.25 km), trending N-Nw s-sw which is the re-
gional strike of the crystalline rocks of the area, the
charnockite-khondalite suite. Distributed unevenly in
the massive syenite nidge, zircon crystals crop out on
the southwestern flank. A close examination of the
rock would reveal that far from any uniformity in their
distribution, they occur haphazardly either as clusters
or separated far apart with barren areas where ap-
parently no crystals are seen. Such a cluster would
contain zircons of all sizes from a millimeter to over
100 mm. The charnockites comprised of the inter-
mediate and acid types, surround the syenite body. No
distinct contact is seen between the two rock types.
Instead, there is a gradual merging of the one with the
other. A traverse across the syenite to the nearest
charnockite outcrop would reveal traces of quartz
gradually appearing in the peripheral parts of the
syenite body. Based on field and laboratory studies, a
common consanquinity is suggested?,

The diopside syenite is greenish-grey, coarse-
grained and essentially composed of feldspar (80°))
and diopside (129,). The accessories (8 9,) include
hornblende, sulphides, iron ores, sphene, mica and
apatite in the order of abundance. It is significant that
the charnockite-khondalite suite of rocks and their
associates constitute the provenance for the renowned



