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1. INTRODUCTION

YHE term phonon signifies a quantized
acoustic oscillation and is of twentieth
century origin. But the basic foundations of the
propagation of elastic waves in isotropic media

of crystals were laid more than a century ago.

The subject of phonons has retained its vitality,
despite sustained activity over hundred years,
essentially because phonons constitute a very
fundamental excitation in physics. Develop-
ments In computers, lasers, cryogenics, measur-
ing techniques and the availability of new exotic
materials have all helped the experimenter to
explore frontier regions, which he could not
have dreamt of attempting a few decades back,
and have contributed to the phenomenal growth
of the subject duning last few years.

2. ELASTIC WAVES IN CRYSTALS

In an elastically isotropic medium, the waves
that propagate are the shear or the compres-
sional modes. The two shear modes propagating
in any direction are degenerate but are strictly
transverse in the sense that their polarization is
perpendicular to the direction of propagation.
Likewise the compressional mode is longitudinal
or a so called ‘pure mode’. In a crystal ton, three
types of elastic waves propagate in any direction,
which we shall call for convenience the quasi-
longitudinal (L), fast shear (FT) and the slow
shear (ST) modes. The velocities of these waves
depend on the direction of propagation as well as
the elastic constants of the medium. But unlike
an isotropic solid, wave propagation in crystals
1s antsotropic and this anisotropy bestows them
with several properties, which are still being
investigated. Elastic. waves in crystals are not
strictly longitudinal or transverse in contrast
with an isotropic substance. The polanzations of
the three modes mentioned above are mutually

perpendicular to each other but excepting for
certain special directions depending on the sym-
metry of the crﬁstal lattice, these are obliquely
inclined to the direction of propagation. Pure
modes’ occur along directions related to the
symmetry axes, and symmetry planes, or along
certain non-symmetry directions determined by
the elastic constants of the crystal. Generally
waves propagating along three-fold, four-fold or
six-fold axes are pure and besides, there exists
one pure shear mode normal to a plane of
symmetry,

An important consequence of the elastic ani-
sotropy of crystals is that the group velocity is
not collinear with the wave vector except along a
few symmetry directions. The group velocity
vector is alternatively called the ray vector or the
energy flux vector since it signifies the direction
of transport of elastic energy in the medium. Ifa
pulse of acoustic energy is radiated by a plane
wave transducer, the wave packet will travel
along the direction of the group velocity vector
(¥:). which will be inclined to the wave vector. In
order to intercept the acoustic pul,seQ. the receiv-
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Figure 1. Detlection of the quasilongitudinal beam
quartz (After staudt and look)
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ing transducer should be displaced as shown in
[gure 1.

The amsotropy of elastic wave propagation is
best understood with the aid of a few surfaces in
three dimensions. I one joins the end points of
all the radius vectors given by r=n/ v, wherenis
a unit vector in the direction of wave propaga-
tion and v is the velocity of propagation in that
direction, the surface obtained is known as the
imverse velocity surface. Corresponding to the
three different modes of propagation, the inverse
surface exhibits three sheets. The shape of these
sheets instantly shows the anisotropy in the
velocity of propagation of elastic waves tn any
dircction. Another surface, known as the energy
surface or the group velocity surface, represents
the envelope of all points reached by the energy
ftlux of a disturbance set at the origin, after unit
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Figure 2. (a) Inverse velocity surface of V3Si at
4.2° K in the (001) plane. (b) Ray velocity surface

of V381 at 4.2°K in the (001) plane.
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time. The radius vector from the source to any
point-on this surface represents the distance tra-
velled by the energy in unit time in that direction
or the group velocity of the waves. This surface
exhibits topologically interesting geometric fea-
tures for most crystals. The energy surfaces for
the two shear modes exhibit ramps or ridges. A
section of the energy surface for the ST mode by
a principal plane invariably exhibits cusps along
one of the symmetry axes. A cusp reveals the fact
that the group velocity isa many valued function
of the wave vector and there exist several wave
vectors corresponding to a single group velocity
vector. In figures 2 and 3, we reproduce some
typical sections of the inverse velocity as well as
the energy surface by the principal (100) and
(110) planesH. The cuspidal edges seen in the
figure arise only for the two quasi-shear modes;
the quasi-longitudinal wave sheet does not con-
tain a cusp. The cusps arnise from the convoluted
form of the quasi-shear inverse velocity surface
in the vicinity of the cubic axes of the crystal. For
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Figure 3. (a) Ray velocity surface and inverse
velocity surface for Cu in the (110) plane.
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sections by the nrincipal plane for a cubic crys-
tal, the existence of a cusp along the cubic axes
or the face diagonal direction depends on the
anisotropy factor 4 =2Cu/{(Ciy— Ci2). f A>1,
a cusp occurs along the cubic axis; otherwise, it
occurs along the face diagonal.

The elastic wave surfaces are especially inter-
esting for the A-15 compounds which have high

18

Figure 4. (a) Section of the inverse velocity surface
of VaSi at 4.2°K by the (111) plane. ¥’ and 2
refer to the (T10) and (1 12) directions. (b) Section of
the energy surface of VaSi1at 4.2°. Y and Z'refertothe
(110) and (112) directions of the crystal.

superconducting critical temperatures. These
surfaces undergo a phase transformation at low
temperatures just above the superconducting
cntical temperatures and the shear modes prop-
agating aloag a face diaganal (110) with (1 T 0)
polarization becomes soft. In figure 4, we have
drawn the inverse as well as the ray velocity
surface® for V3Si, which is one of the A-15
compounds.

3. INTERNAL CONICAL REFRACTION
OF ACOUSTIC WAVES.

With the progress in experimental techniques
1n ultrasonics, it has become possible to obserye
several phenomena that have been known only
In optics for a long time. As an example of the
one such phenomenon, we may cite the internal
conmical refraction of acoustic waves. For cubic
crystals, the phase velocities of the two quasi-
shear modes become equal for propagation
along the (100) or (111) directions. Such a direc-
tion for which the shear mode velocity is degen-
erate is called an acoustic axis. For propagation
along an acoustic axis of a crystal of any symme-
try, the polarization vectors of the shear modes
can lie anywhere in a plane normal to the polari-
zation of the longitudinal wave. The associated
ray vectors emerge along the generators of a
cone. Musgrave® showed that a circular cone of
internal refraction exists for transverse waves
travelling along the (111) direction of cubic crys-
tals. The nature of conical refraction and the
semiangle of the cone have been investigated for
tetragonal and hexagonal crystals by the present
author®. De Klerk and Musgrave’ observed
experimentally conical refraction for cubic crys-
tals along the (Il1) direction. Papadakis®
showed evidence of ICR in rocksalt and calcite
single crystals by observing along one of the axes
of threefold symmetry in each crystal. For cubic
crystals, calculations show that the semiangle of
conical refraction varies from 6° for aluminium
to 31° for copper.

4. FARADAY ROTATION OF ACOUSTIC
SHEAR MODES.

Faraday rotation and rotary activity cause the
plane of polanzation of linearly polarnzed trans-
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\erse waves to rotate as the wave propagates in
the medium. It i1s well known that if the velocities
of propagation of the two waves with positive
and negatinve aircular polarization are different,
rotation cffects occur for the plane of polanza-
tion. Though optical activity has been known
since 1811, experimental evidence for acoustic
activity was not forthcoming until 1970. Pines’
as well as Joffrin and Levelut' provided obser-
vational evidence of rotary activity for shear
waves propagating along the z axis for trigonal
quartz. Theoretically rotary activity for acoustic
waves Is possible if the compliance matrix for a
substance becomes non-symmetric and this
happens for trigonal quartz, which is acousti-
cally active for propagation along the z axis. In
the absence of spatial dispersion, shear waves
propagating along the z axis of a trigonal crystal
are degencrate but spatial dispersion couples
these modes, leading to nondegenerate circularly
polarized waves propagating along the z axis.

5. HELICONS AND HELICON-PHONON
INTERACTION.

It has been predicted by the present author"
that acoustical activity can also be observed
under another circumstance when the phonons
Interact resonantly with an electromagnetic exci-
tation known as the helicon. While electromag-
netic waves cannot normally propagate freely
without suffering reflection at the surface or
damping in a metal, the situation becomes differ-
ent when a magnetic field 1s superposed on the
metal. Helicons are the simplest kind of waves
propagating in a magnetised plasma. The possi-
bility of guided propagation of electromagnetic
waves along a field hne 1n a metal was first
pointed out by Aigrain'’ and these waves were
later observed by several others. Helicons are
low frequency circularly-polarized electromag-
netic waves that propagate freely in metals or
doped semi-conductors. They can propagate
either parallel to the magnetic field or at a2 small
angle relative to the field. The dispersion equa-
tion for the helicon is of the form (ii)

__AZ CH|icose | : {
¥ 4 Ne W T COS ¢

(1)

where w and & denotes the frequency and wave
vector of the wave; f{ 1s the applied magnetic

field; N is the density of the free electrons: w. is
the cyclotron frequency; ris the collision time
and ¢ s the angle between the wavevector and
the field. The phase velocity of the helicon is

u=[wCH| cosd /4 Ne]'? (2)

It can be seen that the helicon velocity exhibits a
parabolic increase with H, the magnetic field.

6. HELICON-PHONON INTERACTION.

For magnetic fields of the order of 10°G. the
phase velocity of the helicon can be made to
match the velocities of propagation of the acous-
tic waves in metals and interesting resonant
interaction effects then take place. Asstated ear-
lter, the spectrum of helicon is quadratic with
respect to the magnetic field whereas the spec-
trum of sound waves is lincar. The dispersion
curves can cross and the crossing point corres-
ponds to a resonance. The interaction of both
the waves with the conduction electrons removes
the degeneracy and the result 1s a set of coupled
electromagnetic and acoustic waves. The
helicon-phonon interaction was first experimen-
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Figure 5. Variation in the phase velocity of the
helicon and acoustic modes with magnetic field for
Potassium; 8 is the angle between the wave vector
and the x axis (cubic axis), while ¢ is the angle
between the magnetic field and the direction of
propagation.
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1ally observed by Grimes and Buchsbaum'* for
Potassium.

The dispersion equation for helicon-phonon
interaction for propagation of the waves parallel
to the magnetic field as well as at smalfl angles to
it has been derived by the author and his stu-
dents'™'® and the nature of the interaction in the
resonant region has been extensively investi-
cated in a series of papers' ™%, It is found that in
the resonant region, strong interaction takes
place between helicons and the phonons result-
ing in modcs that are hybrid in nature and
exhibit characteristics of both clectromagnetic
as wellaselastic vibrations. Besides, at the reson-
ant point mode conversion takes place butifone
moves away from the resonance region, the
waves .resume their normal charactenstics. In
figures 5 and 6. we depict the nature of variation
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Figure 6. Variation in the phase velocity and
acoustic modes with magnetic ficld for Potassium;

=0, ¢=40.

of the three acoustic modes, and the helicon with
the magnetic field in the resonant region for
parallel propagation as wel] as propagation of
the wave at an angle 40° to the direction of the
magnetic field. It can be seen that at the reson-
ance region. mode conversion takes place and
the waves exist as hybrid waves exhibiting the
characteristics of both elastic as well as electro-
magnctic excitations, Another interesting lea-
ture is that for parallel propagation, the helicon
does not interact with the longitudinal sound
wave. For oblique propagation, the longitudinal

where ' =

displacement is no longer parallel to the mag-
netic field and can produce an induction field
which results in interaction with the helicon.
This can be scen from figure 6. As the field
strength 15 increased. the hehicon mmteracts suc-
cessively wath the slow shear, fast shear and the
longitudinal mode. A significant feature of the
oblique propagation i1s that the modes stay as
hybrid waves overa longerrange of the magnetic
ficld.

When the helicon propagates at an angle to
the magnetic field, there can be sigificant non-
local effects and the helicon mode will be
damped due to a collisionless absorption of the
wave by the conduction clectrons. In the long
wavelength limit k/> 1, where /is the mean free
path of the electrons, the dispersion equationfor
the helicon 1s modtfied into

2
w = KcH lcos | (t—iT") (3)
47 Ne

r 3 .
+ — LR un* ¢ (4)
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Non-local effects do notalterthe heliconspec-
trum but modify the damping. The first term in
(4) is the collisional damping whereas the second
term denotes non-local damping which 1s colli-
sionless. When further gquantum effects become
significant, the damping displays yet another
interesting feature. In a strong magnetic field,
the electron energy levels are quantized and the
separation between these Landau levels 18 7 w,
which is usually less than the Fermu energy Er
The transport properties of a metal are deter-
mined by electrons in a narrow regionof width T°
near the Fermi surface. Under conditions of
quantization, the values of the component paral-
lel to the field (2) can take only discrete values
given by
P.=2m* (G —nh«)” (5)

It then becomes possible that for some values of
the magnetic field, there may be no electrons in
the Fermi surface with a P, value satisfying con-
servation conditions. In these regions of the
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magnetic ficld, there will be no absorption of the — —_——
wave and the damping will be zero. Damping will Around H=1-2 x10”6
be finite only for certain discrete values of the P = Pure heficon

: . 1&3 = Hybrid hel-phonon
magnetic field for which the electrons on the
Fermi surface with P given by (5) satisfy the
conservation conditions. Thus the damping will N l G,
undergo oscillations with the magnctic field and
these are known as the giant quantum oscilla-
tions. Returning to helicon-phonon interaction,
all the four hybnd modes including the three
acoustic modes exhibit damping due to colli-
sionless absorption. This is shown in figure 7
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Fgure 8. Giant quantum osciliations in the
damping of the hybrid modes with magnetic field.

As a result of the helicon-phonon interaction,
the degeneracy in the velocity of the two shear
| modes propagating along a cubic axis in a metal
1s lifted. Consequently the two shear modes,
which are circularly polarized will propagate
with different velocities, the difference in the
| velocities depending on the strength of the
helicon-phonon interaction. Hence the condi-
tions for rotary activity are present and the
rotary activity of the shear modes can be
observed, if looked for under proper experimen-
--------- tal conditions.
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= 7. PHONON FOCUSSING IN CRYSTALS

When a metal is cooled far below the super-
conducting critical temperature, there are neg-
ligible normal state electrons to carry heat so
that thermal transport is dominated by phonon
scattering processes. If the substance 1s further

02 10 18 26 34
H(G) x 10°

Figure 7. Varation in the damping decrement with
magnetic field.

where I, denotes the damping of the helicon 1n
the absence of interaction; Iy, I'2,I'3,Iq, denote
the damping factor of the four hybrid modes.
The figure clearly shows that the acoustic modes
also get damped in the interaction region,
besides confirming the phenomenon of mode
conversion mentioned earlier. Further all the
four modes exhibit giant quantum oscillations in
the interaction region, which is normally a prop-
erty of the helicon alone. This is shown by figure
8 where the moaes (1 I's) exhibit giant quantum
oscillations.

free from defects, impurity scattering is reduced
to the minimum and the mean free path at these
low temperatures will be limited by the hnear
dimensions of the sample only. Phonons, under
such conditions, will propagate baliistically.
Experimental measurements on thermal con-
ductivity for niobium which is a super conductor,
have shown that the thermal conguctivity at very
low temperatures is proportional to T° It is
further established that the thermal conductivity
at low temperatures is highly anisotropic, being
higher along symmetry axes than along other



Current Science, August 5, 1983, Vol 52, No. 15

701

directions. Measurements of silicon and calcium
fluoride in the boundary-scattering regime have
demonstrated anisotropes upto 509% for silicon
and 409, for calcium fluoride. All these facts
show that at these low temperatures, phonons
propagate ballistically rather than diffusively.
As stated earlier, the elastic anisotropy of
crystals results in the deviation of the group
velocity vector from that of the wave vector, The
energy flux is no longer collinear with the wave
vector, In their heat pulse expenments, Taylorer
af* reported very large differences in the inten-
sity of phonons of different polarizations propa-
gating ballistically in substances hike Lithium
fluoride or Pottasium chloride. When phonons
were excited in a given region, the energy flow
was enhanced in certain directions and
decreased in.other directions, even though the
original angular distribution of the wave vectors
was uniform. This channelling effect 1s called
‘phonon focussing’ in the literature*>*. Phonon
focussing occurs when the direction of the group
velocity varies more slowly than in an 1sotropic
medium. The energy flow is generally higher
along cuspidal edges or symmetry directions,
though high phonon focussing occurs along
non-symmetry directions too. The channelling
effect of the phonons significantly affects the
thermal conductivity, which is found to be aniso-
tropic for cubic crystals at very low

temperatures.

The phonon focussing effect is beautifully
demonstrated by the heat pulse experiments
conducted by various workers. In these experi-
ments, a thin metallic film is coated on one sur-
face of a crystal and phonons are generated by
passing a shorti electrical or laser pulse over the

film. The phonons arriving at the opposite face

of the crystals are detected by a fast supercon-
ducting bolometer. Pulses due to phonons of
different polarization arrive at the detector at
different times and can be studied independ-
ently. von Gutfeld and Nethercot®® detected the
arriving phonons by a thin metal alloy film
biased near its superconducting transition
temperature, Variation in the resistance of the
film is a sensitive probe of arriving heat pulse. In
the imaging technique developed by Northrop

and Wolfe®®, the heat pulse was generated by a
pulsed laser beam and their bolometer at the
opposite face consisted of a large array of identi-
cal detectors. The phonons propagate ballisti-
cally and the three pulses detected in the expen-
ment correspond to the Yongitudnal, fast and
slow shear modes.

Even though the hot r¢gion in all the heat
pulse experiments is created as an Incoherent
source of phonons with isotropic angular distri-
bution of wave vectors, the corresponding distri-
bution of the group velocity vectors showed high
anisotropy. Phonons are focussed in certain
directions and defocussed in othr directions.
Maris®® peinted out that a phonon magnifica-
tion factor 4 can be defined by taking the ratio
of the solid angles in the wave vector space to the
solid angle in the ray space g, (i.e.)

_!_ d)s  sinbs db; dos
sinf d@ d¢

A dQiq

The enhancment factor A is proportional to the
phonon energy f{lux. Phonon energy emenating
from a heated point source in the crystal is con-
centrated along directions for which A is large.
The phonon magnification factor was computed
for a large number of crystals by Mans,
McCurdy and others by evaluating the above
ratio numerically. Since the directions 6; and ¢
of the group velocity vector are functions of the
polar angles (8, ¢) of the wave vector, it was
pointed out by Jacob Philip and the present
author?’ that the ratio df, d&/d® dé is none
other than the Jacobian (J) of the transforma-
tion 3(8,, ¢)/ (0, ¢) between the vanables (6,
&) and (6, ¢). Since mathematical expressions
could be derived for the components of the
group velocity vector in terms of the wave vec-
tor, it follows that the amplification can be eval-
uated analytically and is given by

{ sin
— J :
A sind

With the aid of a computer, the magnification
A(0, ¢) can be evaluated for different directions
for any crystal. Numerical calculations show
that the phonon magnification factor can be as
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high as 10° for certain directions in crystals. The
magnification has been found to be high for
symmectry directions though it is not restricted to
them, and large values have been noticed for
other non-symmetry directions too. Tocompare
the calculated values with experimental results,
it is often convenient to study A(G,, ¢ ) rather
than A(8. ¢). This could be achieved by sorting
the computer output for A(8, ¢) Iin ascending
values for the parameters 6; or d¢.

The method of ballistic phonon imaging
devised by Northrop and Wolfe enables to pro-
duce a two dimensional map of the phonon
intensities emanating from a point source and to
correlate the observed intensities with geometric
theory. They had been able to map the compli-
cated topological features of the energy surface
which exhibits ramps and nidges. By applying
catastrope theory to the energy surface, Taborek
and Goodstein® concluded that the singularities
exhibited by the energy surface are of the fold
and cusp vaneties. They showed besides that
these are in fact the two possible topological type
of singularities for all crystals including crystals
of lower symmetry.

In figure 9, we reproduce the ballistic phonon
timage for Germanium given by Northrop and
Wolfe. Bright regions in the figure indicates high
phonon flux impinging on the (001) face of the
crystals. The point source of the phonons is situ-
ated at the centre of the opposite face of the

Figure 9. Ballistic phonon image for Germanium
(after Northrop and Wollfe).

crystal. Figure 10 is another three-dimensional
representation of the image given in the previous
figure. The ramp and ndge structures exhibited
by the energy surface are clearly brought out by
this figure.

Figure 10. Three dimensional representation of the
ramp and ridge structures exhibited by the energy
surface. (After Northrop and Wolfe).

8. SECOND SOUND AND SOLITONS

A part from the heat pulse experiments, other
areas hotly pursued in the subject relate to the
second sound” and solitons® in solids. In
second sound, heat propagates in a wavehke
fashion unlike the ordinary diffusive heat con-
duction. Second sound was predicted by Lan-
dau® for superfluid helium on the basis of the
two fluid theory of helium II. Since then there
has been a constant look out for the existence of
second sound in solids Acherman et al*
observed first the propagation of second sound
in solid 4 He and observations of S. S. have been
reported besides for sodium fluoride and bis-~
muth. The propagation of the pulse in the heat
pulse experiments is sensitive to the tempera-
ture. At very low temperature, the pulse propa-
gates ballistically whereas for high 7, the pulse
travels in a diffusive manner. Narayanamurtl
and Varma®observed a secondary pulse of vary-
ing shape and velocity for intermediate tempera-
ture, which is interpreted as second sound. The
propagation of solitons or finite amphtude
waves in crystals is another area which is gaining
momentum. A distinguishing feature of solitons
is that two solitons can cross each other and
reemerge without any distortion in shape or
amplitude. One can confidently hope that
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rescarch in ballistic pulses, solitons and second
sound will unfold new dimensions to this rich
subject with multiple facet, which is still not
closed but looks only brighter.
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