A NOVEL TANNIN FROM PROSOPIS JULIFLORA ROOTS

S. MALHOTRA* AND K. MISRA

Chemical Laboratories, University of Allahabad, Allahabad 211 002, India.
*Regional Research Laboratory, Canal Road, Jammu Tawi 180 001, India.

ABSTRACT

From the ethanolic extract of roots of Prosopis juliflora DC a novel tannin has been isolated and characterised as 1,3-glucose diester of 4,4'-dimethoxy 3,3',5,5'-tetrahydroxy diphenic acid.

Prosopis juliflora DC (N.O. Caesalpinaceae) is well known for its economical and medicinal values\(^5\). The presence of polyphenols and tannins in this plant has been reported earlier.\(^6\) Recently, the chemical constituents of its stem bark\(^7\), pods\(^7\)\(^8\) and roots\(^9\)\(^-\)\(^11\) have been reported. In the present paper the chemistry of a novel tannin has been discussed.

Air-dried roots of the plant were extracted with acetone and dried. The roots were then extracted with boiling ethanol. An amorphous deposit was obtained by keeping the concentrated ethanolic extract at 52°C for 7-8 days which could be separated by centrifugation at -10°C at 10000 rpm. It was crystallised to a chromatographically homogeneous buff-coloured semimicro crystals, m.p. 139°(d), (α)\(^20\) (pyridine) -29° and analysed for C\(_{22}\)H\(_{22}\)O\(_{14}\).

It was found to be a non-reducing glycoside, very hygroscopic and sensitive to aerial oxidation. Dark green colour with alcoholic ferric chloride and yellow colour with alkali indicated its phenolic nature. The above tests combined with spectral data i.e., \(\lambda^{E_{\text{OH}}}\) at 271 nm and definite ester band at 1740 cm\(^{-1}\) in IR spectrum\(^12\) suggested that the compound may be a glycoside or a sugar ester of a phenolic acid. Strong peaks at 1180 and 3440 cm\(^{-1}\) in IR spectrum indicated the presence of methoxyl and hydroxyl groups in the glycoside. Alkoxyl estimation indicated the presence of two methoxyls per mole of the glycoside\(^13\).

On acid hydrolysis the glycoside yielded an aglycone along with a sugar identified as D-glucose by direct comparison with an authentic sample and osazon preparation. The glycoside could also be hydrolysed with alkali, which further supported the presence of ester links in the compound\(^14\).

The aglycone, C\(_{16}\)H\(_{18}\)O\(_{8}\), m.p. 240°C was identified as 3,3'-di-O-methyl ellagic acid(II) by its absorption maximum at 274 nm; and superimposable IR spectrum which showed strong peaks at 3430, 1735, 1720 and 1180 cm\(^{-1}\). A bathochromic shift of 28 nm with sodium ethylate and no shift with sodium acetate clearly indicated the presence of two methoxyl groups at 3,3'-position of ellagic acid\(^10\)\(^,\)\(^12\).

The presence of ester linkages in the glycoside and subsequent formation of 3,3'-di-O-methyl ellagic acid (III) by alkali hydrolysis suggested that this aglycone is not present as such in the glycoside but rather has been formed as a result of cyclisation of the corresponding methyl ether of hexahydroxydiphenic acid, under the conditions of hydrolysis. It is well known that under these conditions hexahydroxydiphenic acid cyclises to give the corresponding lactone i.e., ellagic acid\(^12\). Thus, it could be concluded that 4,4'-dimethoxy 3,3',5, 5'-tetrahydroxy diphenic acid (III) is esterified through the bidental linkages with two hydroxyls in glucose moiety; one of these must be at the anomeric carbon atom, since the glycoside is non-reducing. (chart 1).

![Chart 1](image-url)

Methylation of the glycoside with diazomethane followed by acid hydrolysis, yielded a pale yellow product, mp 238°(d). It was identified as hexamethoxydiphenic\(^10\)\(^,\)\(^12\) acid by mmp 239°(C) (lit. 238-40°C) and superimposable IR spectrum, \(\lambda^{K\beta}_{\text{max}}\) at 3000, 1680, 1570, 1460, 1410, 1320, 1180, 1128 and 1000 cm\(^{-1}\).

Quantitative hydrolysis and subsequent sugar estimation\(^15\) showed the presence of only one mole of glucose per mole of the glycoside. Out of the two ester links, one was decidedly at C-1 of glucose, as shown by its non-reducing nature. The position of the second ester link was decided by permethylation\(^16\) the glycoside followed by acid hydrolysis when 2,4,6-tri-O-methyl glucose was identified by its R\(_G\) value\(^17\). This showed that hydroxyls at position C-1 and C-3 of glucose moiety are involved in esterification.

Hence a probable structure could be assigned to this sugar ester as 1,3-glucose diester of 4,4'-dimethoxy, 3,3'-5, 5'-tetrahydroxydiphenic acid I (chart 2).

This sugar ester can be classified as an ellagitannin as on hydrolysis it yielded an ellagic acid derivative.
Acid hydrolysis

Compound I (0.01 g) was refluxed with aq H₂SO₄ (7%, 3 ml) for 2 hr solution cooled, poured in iced water (20 ml) extracted in Et₂O containing traces of pyridine, crystallised from aglycone:dioxane-light petrol as yellow crystals.

Concentrated hydrolysate was neutralised with BaCO₃, chromatographed on PC, Rₖ 0.18 (solvent: aic, spray: aniline hydrogen phthalate).

Aglycone: m. p. 272° (lit. 274°), ν(OH) max nm: 274, + NaOEt: 302 (a bathochromic shift of 28 nm), + NaOAc: 274 nm, ν(CH₃) (KBr) 3430, 1735, 1720, 1180, 1040 and 940 cm⁻¹.

Alkali hydrolysis

Compound I (0.02 g) dissolved in 5% aic NaOH soln (10 ml) was kept at room temperature for 24 hr. It was acidified with glacial HOAc acid and continuously extracted with Et₂O containing pyridine, concentrated, crystallised from dry Me₂CO·Et₂O as yellow crystals, m. p. 273°, (lit. 275°) identical with the aglycone obtained an acid hydrolysis in all respects.

Quantitative acid hydrolysis

Compound I (0.1 g) was refluxed with aq. H₂SO₄ (70%, 3 ml) for 2 hr, cooled, poured onto ice cold water. Aglycone collected by the procedure discussed above and weighed directly. Hydrolysate, neutralised with BaCO₃, made up to 25 ml and sugar estimated by the colorimetric method of Folin and Wu.¹⁵

Found: 3,3'-di-O-methyl ellagic acid, 63.9 and reducing sugar 34%. C₂₂H₂O₄ requires 3,3'-di-O-methyl ellagic acid, 64.75 and reducing sugar 35.27%.

Methylation and hydrolysis

To the compound (I) (0.15 g) in dry Me₂CO (5 ml) excess of CH₂N₂ was added and kept for 24 hr in cold and excess of CH₂N₂ was removed, solvent, distilled off and resulting yellowish syrup crystallised from dry Me₂CO·Et₂O mixture.

This methylated compound was subjected to acid hydrolysis with aq H₂SO₄ (7%, 3 ml) as discussed above to collect pale yellow crystals of methylated aglycone, m. p. 238° (lit. 238°-40°), IR ν max (KBr): 3000, 1680, 1570, 1500, 1460, 1410, 1320, 1180, 1120 and 1000 cm⁻¹.

Permethylation

To the diazomethane methylated glycoside (0.1 g) dissolved in dry MeOH (20 ml), Ag₂O (1 g) was added,
CH₃I (3 ml) was added at 40° with stirring, in small lots. It was refluxed for 4 hr, cooled, extracted with CHCl₃ and the product obtained was subjected to the above procedure again till the methylation was complete. It was hydrolysed with aq. H₂SO₄ (7%, 3 ml) as discussed earlier. Aglycone: m.p. 237° (lit. 238–40°)₁², sugar: Ṇ₆ 0.85 (PC, solvent: C, spry: aniline hydrogen phthalate).

ACKNOWLEDGEMENT

One of the authors (SM) is thankful to the CSIR, New Delhi for financial support.

7 September 1982; Revised 4 January 1983

QUINAZOLONES AND THEIR PSYCHOPHARMACOLOGICAL ACTIVITY

S. SINGH, M. SHARMA, C. NATH, K. P. BHARGAVA AND K. SHANKER
Department of Pharmacology and Therapeutics, King George Medical College, Lucknow 226 003, India.

ABSTRACT

Twenty new substituted quinazolones were synthesized and characterized. They were screened for various central nervous system activities. Some compounds have shown potent tranquilizing, anti-depressant and anti-convulsant activities.

INTRODUCTION

EARLIER studies from this laboratory have shown the potentiality of quinazolone moiety for central nervous system (CNS) activity¹. The substitution of position three of quinazolone nucleus plays an important role in imparting CNS activity in quinazolones². We have, therefore, incorporated different moieties via a phenyl bridge at position three to see the effect of these substituents on CNS activity.

EXPERIMENTAL

Melting points were determined in open capillary tubes and are uncorrected. TLC was carried out by employing silica gel G. Mass spectra were recorded on J. M. S. D. 300 focussing spectrometer with J.M.A. 2000 data. 5-Bromo and 5-iodo anthranilic acids were prepared by known methods⁴. 2-methyl-3-(3'-acyl aryl)-6-substituted 4 (3H) quinazolones

These were prepared by the fusion of substituted acetonanilids (0.01 mole) and m-amino acetophenone (0.01 mole). The resultant jelly-like mass was crystallized with ethanol. Quinazolones thus prepared are reported in table 1.