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VECTOR-MATRIX REPRESENTATION OF BOOLEAN ALGEBRAS AND
APPLICATION TO EXTENDED PREDICATE LOGIC (EPL)— Part IT°
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6. NON-MATRIX AND MATRIX CONNECTIVES
IN EPL

(a) Unary connectives, €, N, M, L, for affirmation
and negation:

As shown in Table 4, Section 5{c), these operators
permute the four states vy, &, A, 3,among them-
selves, and similarly permute the two states 3, and 6@
between themselves and A and & within the pair. The
algebraic equations that defing these transformations,
for the operator in QZ=D (for E=affirmation,
N =negation, M= complementation and
L =ellation:), are

L=EF :a,= by, a5= bs, a.= b,, (20a)
Z=N:a,=b, as=b;s, a.=b,, (20b)
2=M: as=b,, as=bs, ac=b,, (20¢)

Z=L :ay,=b,, as=bs, a;=b,. (20d)

It is readily verified that N>=M?®=L* = E, so that all
three have the nature of negating a term to which they
are applied, but in three different ways.

(b) Binary connectives E and G:

The unary “affirmation™ operator £ is also the
binary “equivalence” operator, for which the matrix

form

1 0 O]
|
\E|l= |0 1 © (21a)
0 0 1
is the best representation for practical use. Thus, if

(ae=by=atb=(l E{d)=(1 O)=T (21b)

then O and b have the same 3-vector canonical form.
However, just as in SNS, this operator does not have

el

® The author was formerly Professor of Mathematical
Phitosophy, Indian Institute of Science,
Bangalore 560 012.

t Part 1 has appeared in Curr. Sti, April 5, 1983,

[ndia.

the property of giving F if 0 &% b. For this purpose,
we require the “agreement” operator’ G . similar to the
SNS G. We also define this operator G in EPL, similar
to SNS, by the equations

(QG=b)¢#aT=b?: a5= bai at":bﬁ. (22)

The binary operator G gives T if the three components
of the two 3-vectors are all alike, and F otherwise. [t is
useful for designing the canonizer and the standard-
1zer discussed in the next section. For lack of space, we

shall not give the Boolean algebraic expression for
{a} G| b)=c.

(¢) Canonizer and Starnidardizer

We utilize the formulae in Tables 7(a) and 7(b) for
this purpose. Taking Table 7(a). 1t can be verified that
the application of the canonizer £ gives

a’'l=q (23)

where ¢’ = (g% g5 qi) = (v’ 8" ¢’ ) ot the standard form
(D (v’ 8 ¢)(a B).and Q= /(v &¢). The nature of £ 1s

as in Column.3 of Table 7(a).

For the standardizer, we use the information taken
in for the canonizer in the reverse direction. We sup-
pose that the canonical state Q=(+y & €) is given, and
we require ({) and (a 8), given Q"= (v’ 6" ¢') of the
standard form ({) (v’ 8" €') (a 8). This 1s done as
follows.

(i) Calculate ny, Nz, N3, Ny, equal toqZforZ =E,
N, M, L respectively, and find out the SNS state ol

(v/1CGlg')=g;.

(i) If g;is T, for some j=1, 2, 3 or 4, then the
standardized state (s given by the six elements, in the
row corresponding 1o j, in Table 7{b).

(iit) If all g;are F, [ can be taken to be 1, and we
calculate QY Q’= Q" and then the $NS state of the re-
lation(Q” | £ ¢g).(one of T, F, D X)gives thestate of
$. Theve are summarnized in Tabk 7(b).

The proofs of these are resenved for a detaided
paper,
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(d) Boolean operator connectives U andV in BA-3

We have already seen that these two operators Uand
V in logic, respectively correspond to the Boolean
“sum” (¢) and the Boolean “product™ (& ) in Boo-
lean algebra. They have been defined already for n-
vectors and used for SNS in [1], corresponding to
BA-2. Simularly, the operator V used in a’Va” in
BA-3, brings out the state that is common to, two
state-vectors &’ and Q7. For example, if @'=VY =
(1 00), and a"=3=(10), then a'Va® is
(100)XR(I 10)=( 00), ie “forall”. (Note the
analogy to the concept of “intersection” in set theory.
However, the connective “and™ in QPL has other inter-
pretations, representable by 64 possible matrices ¥ (7,
16, j=1 to 8, (as shown in Section 6(f) below) In
EPL).

On the other hand, if the logical operation has the
property of taking as true the Information provided by
either one of the two sources, (as with rumour), then
we must employ the connective operator U. ¢Note the
connection, in this case, with “unjon™ in set theory.
Here again “or”in QPLisdescribed in full, only bya set

of 64 O, j)} operators—sce (f) below).

(e) Singular matrix connectives S, ;:

As we have already seen, the input and output
vectors in EPL are all canonical 3-vectorsof the type
Q = (ayasa.) and b=(b,bsd,) so that a general
matrix connective between them is representable by
3 X3 Boolean matrix | Z|. Any matrix connective Z

in EPLis thus representable by | Z |, which is a sum of
matrices | Sy, | as
X

| Z)= D | Sk(hg. )], K<9 (24)
k=1

The matrix | Sx, | hasa component S, =1 (A, g =

One of v, 8, ¢) and 0 otherwise, and may be called the

“singular matrix™ | $), | and a general 3 X 3 Boolean

matrix is a sum of af mosr nine such singular matrices,

Thus, the “and™ relation between (a, 0 0) and
(00 be)is

(a? | Soe | a.) = (cq cﬁ) (25)

and this will give c =T only fora=V¥ and b= and
¢ =F, for all the other eight out of the nine possible
combinations of the basic states.

Because of this, the result of any unary relation
<al|lZ|=<b|orany binaryrelation<al Z|b>=
C is a Boolean direct sum of the application of 9 or less
singular matrices. However, we shall discuss below
particular 3 X3 matrices, since they have a direct
logical interpretation in EPL.

() Sixty four operators each of types A and O and
their relation to | and J:

In logic, one often gets a relation like ¥ (x) & 3(y) =c.
An examination of the relational matrix for the con-
nective “and™ in this shows that if the “and™1s between

a q(i) and a q(j), then the matrix | A(J, j)}{| has

TABLE 7

Algorithmic Table for the Canonizer and Standardizer

(a) Canonizer @'Z=q

(b) Standardizer, yielding { and (a 8), given Q and Q’

e A

— ,
Sigh State of Canonizer Value of j Standardized state
' sentence § | Zz forg,=T
(a B) (0) (y' 6" ¢') (a B)
1 T (1 0) 1 1 qt T(10)
l FOD 2 | aN F (0 I)
0 T (1 0) 3 0 qM T (1 0)
0 F (0 1) 4 0 ql F(0 1)
Any D 1) qvq =q”
Any X (0 0) None | qQ"EQ =s (a B)

These are defined in subsection (vi), but we can straightaway write Q= AX=(1 1 1)in the former case, and

q=C=(0 0 0} n the latter.
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non-zero elements tor those A for which the elements
of (i) are non-zero and for those g for which the
elements of gf " ~re non-zero. Considering our case,
Y corresponds o /=1, and only g(1) is non-zero
and 3 corresponds to f =6 (of Table 5), with q+(6), q5(6)
non-zero. 1hen the corresponding matrix for
Y(1, 6) has only A4+, A5 non-zero out of its 9
components. Thus,

:T | 0]
1A, 6)] = LU 0 0

0 0 ¢

In the same way 64 Ali,j)'s can be formulated, for the
64 “and” relations, (i)Y A{i, /) Q) withi, /=110 8
(for specific examples, see Section 7). The correspond-
ing matrix | A, j)| 18, as in {26), the “outer product”
of | g(iY>> and <7 g(j} | via. the Boolean product oper-
ator (Q of BA-1, giving

AN T=190)> & <q()] (27)
Table 8(a) illustrates the rule for the outer product.
Similarly, the gPL “or”, jllustrated by Q(!, 6) in
Table 8(b), has for its matrix, the Boolean “outer
sum” of g(l) and ¢(6). Hence, in general,

, for(V & 1) (26)

| 0G, D1=1300> & <qU)! (28)

Proofs of (27) and (28) are omitted for lack of space.

TABLE 8

Generation of { A(l, 6)| and 0(1, 6)| os the
outer product and sum of < q(1)} and < 4q(6)|

(a) 1A, 6)|= (b) 10(1, 6) | =

| g(1) > & < q(6) | L g(1) > < q(6) ]
q(6) q(6) Lo

q(l) _]. 1 0] q(1) _
| 1 1 1 0] ! [1 1

0 0 0 O 0 1 1 0,

0 (0 0 O] 0 1 1 0

Using just the definitions (27) and (28) for A(i, j)
and Q. j), all the interrelations between “and ™, "or”,
“If” and “only if** are derivable, if we take over the
definition of the complement | Z€| of { Z| {rom the
general theory of Section 2. The series of equations
from (29) to (32} all follow purely from 3 X 3 Boolean
matrix algcbra, using the above correspondence with
connective operators A and O of £pL, and by taking
over the inter-relations between A, 0, 1, J of sns,

S —

A — i, L

We shall use the notation g(i°) also for g(i), in
which the relation between fand i ¢ isasin(29),ifthe
serial numbers in Table 5 are used for g(¢) and g{;) in
(27) and (28).

=i+, j°=j+1,if iand j are odd
. (29)
i=i—1,j=j—1,if iandj are even

Then, the eight binary connective A, A%, ©,0%1,1€,J,
J¢of classical logic have the interrelations given in (30
to 32) (not all are histed, but only the more essential
ones). Thus,

A, j} = OIS j©) (First de Morgan relaiion) (30a)
A% j¢) = O, j) (Second de Morgan relation)(30b)
For the implications 1({, j) (*1f”, in the forward direc-

tion) and J{7, j)} (*only if " in the forward direction), we
have

(1, ) = OIS j)= A, j°) (31a)
JU, Y= 0@ iy =AY, i9) (3tb)
Vi, /) = J(, i) (Contrapositive form) (31¢)

Similariy, for the denials of the relations { and J, we
obtain Eqns (323, b).

1°G, j) = OCUS jY = A3 J€) (32a)

JU, Hy=0°US N = A0 ) (32b)

Two of the A’s require special mention, namely
D=A(7, 7) and X=A(8, 8). D has the property of
converting any vector gfi) into g(7}=(1 1 1) bythe
unary operation < g(i)|D| , while X do¢s the oppo-
site, namely converting all vectors ¢(f) into g(8) =
(0 0 0) by the formula <7 q(i)| X |. These matrices
have been used in Table 7.

In addition to these, we must mention the matrix
representations of Eand N, which are used quite often.

Po'ﬁ" Po?’i
[ Et= 1o 1 o] :yN;= 1o 1 o (33)
oo 1 1o

Thus, out of the 2°(= §12) possible 3 X 3 Boolean
matrices, only 130 are used for the connectives of EPL
to serve as representations of commonly utilized togy-
cal relations, The others could be used for rare occa-
sions, via. the singular matrix sum representation for
any 3 X 3 Boolean matrix, Some of them have good
fogical sense, e.g.
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I t 1
0 0 0 (34)

0 0 0

makes D always ¥V in QR = b, irrespective of the state
of O; but we shall not describe any of these.

| RI=

7. APPLICATION OF VECTOR-MATRIX ALGEBRA
TO EPL

In this last section, we have considered the algebra
of the logical connectives of EPL. These are however,
applicable only to the canonical form of QPL terms.
We shall now consider the use of these matrices for
unary and binary relations of EPL, but with only one
variable. The extensions to more variables, and to the
cases where the sentence § itself contains more than
one term connected by logical relations, can be made,
but they are not discussed 1n this paper,

(a) Binary relations:

It has not been recognized so far, that the 3 X3
matrix that represents a particular relation (e.g.
“and ™} is not unique, but has 64 variations inthe BA-3
representation—A(L, j), i, j=1 to 8. Thus, taking
A(I, 6)illustration (see Table 7), it has the necessary
property that it will give

(a] A(1, 6)|b)=T (35a)
only if

Laleg()[{(=V)=(1 00

..-.nd (35b)

<bl€Lq(6)|(=3)=(110)

This agrees with our intuitive concept of the “and”
relation and, for QA(l, 6)b = c¢cwehaveforanyinput
states of Q(= g(k)), and B(= q(/}), the equations

< q(k)} A1, 6} [ g({)=ca (36a)
< q(k)| AL, 6)ig(l)=cg (36b)
C = (Cacg) (36¢)

giving the SNS state of the relation c.

The same process can be applied for O(J, j) (and for
AS(i, /) and O%(i, j) also). Taking e.g. O(l, 6), wecan
verify from the matrix that

(a|0(1, 6)| b)=T (37a)
only if

<ale g (=V)=( 00

or (37b)

<bleELg®)(=H=(110)
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which again agrees with our i1deas regarding the logi-
cal connective “or™, as applied to QPL.

It is quite likely that binary relations of the typec & d,
wherz one is an SNS term and the other is a OPL term
can occur, In such cases, we use 2 X 3 matrices A(T, )
or A(F, j) defined exactly as in (27). In this, <7 q ()|
becomes one of the basic SNS 2-vectors T(= (1 0)) or
F(=(0 1)) as required, while < g(j)| is an EPL 3-
vector. A similar procedure is adopted for A(i, T)and
A(i, F). We shall not pursue this further, but an
example i1s given in Section 7 (c).

The reversal of a binary relation gives a unary
relation as explained in Section 3, and therefore we
shall not discuss binary reverse connectives, but only
unary connectives.

(b) Unary connectives:

The most important unary connective is implies (=—3})
= {(i, j). The straightforward way of obtaining this
matrix is by its equivalent form A°({, j€). That this has
the necessary logical properties is seen as follows, We
know that the sNs “implies” () gives for al=Db the
consequences a1t > b1, ag > bp. In the same
way, if we take, for example, Ql(l, 6) =D, then
(a=vy) > (@=3), and (A="TT1V=A) |
(b=A). The matrix | I(1, 6)| =] A°(l, 5)| 1s
readily seen to have these properties. It is also seen
that the analog, in EPL. of the SNS equivalence
(Lall|=blea b J| =< al), where I'=J,
1s (31c¢).

With these precliminaries, we shall work out a prac-
tical example to indicate how facile the matrix repres-
entation of EPL and SNS is for working out actual

problems.

(¢) The audience-concert-crowd problem

The problem given below employs unary and
binary QPL connectives, an SNS to QPLconnective, and
also the canonizer and standardizer. The problem 1s
first stated in words, then in our notation for logic,
2nd finally in the vector-matrix formalism. The rever-
sal of the steps is, however made completely in the
matrix formalism, except for the last step of translat-
ing the result into the form required. It is obvious that

all the steps are computerizable.

Problem

(i) If not all the audience seats are unoccupied, and
some of the musicians are present, the concert

will g0 on.

(i) If the concert takes place, all windows will be
opened, otherwise all windows are shut.
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{111) If some windows are open, the verandah will be
partly or fully filled with people listening to the
music.

(iv) There are no people found in the verandah. Prove
thay, if, in addition, all seats are occupied, no
musicians have come.

We write the three steps of the problem in the notation
of EPL in Table 9,

TABLE 9

QPL problem in standard notation

Logical equations in

c==(Vvz) (wz),
-]¢ =}(¢-’Z) (WZ)

Window w 2z

C {People p u (32) (w 2) = (34) (pw) |
(Note: (Jw) (v u) B (3u))

(a) Boolean-algebraic notation

The relevant equations are (38), (39), (40) and we
explain them below.

Part A

0 (@ 0 1)l 0)=C=:#(l | 0)=gq(6) for s (38a)

(10)(110)(1 0)=£-¢(1 10)=gq(6)form (38b)

i ] 0]
(I A6, 6)(Am)=c; | A6, 6)[= [1 1 0 (38c)

OO(L

Part B

100
| R| (39a)
00 1

cR

|
=2

3319
1 00
(1 0) ={1 0 O)
001
100
© 1) =0 0 1) (39b)
00 1

Part C

110
(W) 16, 6)=13p); [ 1(6, €)= | 1 10} (40a)
L 11

Verify:

(110 {t10{=(110) (40b)

(11 0) :S'=;»(l) (110 (10 (40¢)

We first canonize the inputs for Part A of Table 9in

(38a, b), and then select the right A(i, j) to connect the
canonical inputs to give (cq ¢g), as shown in (38¢).
Next we formulate the SNS-QPLconnective*imply” of
Part B by a 7 X 3 matrix, Forc=T{1 O),w= y =
(1 00), and tor c=F=(0 1), w=2 =0 U I).
Hence the relational matrix R of (39a) is obtained for
the relations in this Part B, and it is verified that it has
the required properties in (39b),

Part C of Table 9 is straightforward, since it is a
unary relation, and both input and output are already
in the canonical form..The canonical equation for this,
and the relevant merix (6, 6) are shown in (40a
and b). If necessary, the (3p) can be standardized to (3

u) (p w) as in (40c).

(8) Reversal of the steps in Boolean algebraic
notation

In reverse, the two inputs are:

(i) “No persons are in the verandah”, which in
canonical BA form, is

(¢ p)=(0 0 1)forp. (41a)
and |
(ii) “All scats are occupied”, whichin ranonical BA
form is,
(v s)=(1 0 0) fors. (41b)
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We shall simply reverse the canonical equations in
(40), (39) and (38), and write them as (42¢, b, a)
respectively, in that order, to represent the reversals of
Parts C, B, A of Table 9.

{42¢)
(42b)

<plIt6, 6)] =< w| (3 vector)
<w|RY =] (2-vector)

<slAl=<m] 3 veator), if c=T
and (42a)
<slAS{=<m| (3 vector), if c=F

Now<p|=(0 0 1),sothat <p|I'(6, 6)] is
| 11
OQON (1T 11}|=(0O0)forw] (43)

001

Putung < w|=(0 0 1) in (42b), we get

10
|
©01) [00f =(0 1) for<c! (44)
101
LclA =< m]| (45a)

In this, by (41b),<{s| =<1 0 0] in QPL, and taking
the complement of | A(6, 6)| in (38¢) for | AC|, we
obtain

00 1]

|
(100)|001|=(00 )=<m| (45b)

e —

Standardization of < m|=(0 0 1) is straightfor-
ward, and M =(®)) (my), “No musicians are pres-
ent” (QED).

CONCLUDING REMARKS

Thus, we have effectively converted the axioms and
rules of EPL Into vector-matrix equations, associated
with the usual logical functions (NOT, AND, OR, XOR
(of BA-1)) available in a computer. As a matter of
fact, just like MATLOG for SNS, it is not at all difficult to
write a program in FORTRAN 1v for all that we have
discussed in this paper. Qur techrique is therefore
eminently practical and suitable for expanded appli-
cation to more complicated formulae in SNSand QPL.

On the purely theoretical side, the most interesting
aspect is the introduction of the new basic state

“some™ (), which is quite enigmatical for the com-
mon man, It was so for the Jaina philosophers in India
in the B.C.’s, and they gave this indefinite state the
name “gvaktavya™ (indescribable) [6] along with the
simple words “true™ and *“false™ for the two definite
states'. Godel's demonstration’ that any theory in PL,
which is large enough, must contain theorems in this
state (neither provable, nor disprovable) is therefore
not an enigma for epistemology as it appears to be at

first sight, but a necessary consequence of the struc-

ture of QPL, when extended into EPL. If the state I is
needed for the completeness of QPLso as to be isomotr-
phic to BA-3, there must be some statements in any
system of logic isomorphicto BA-3, which possess the
property of this T state—namely that of neither com-
plete truth, nor complete falsity, both of which are
unprovable. That this is true of some theorems in gny

theory making use of QPL is the beauty of Godel’s

4
theorem .
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Note added in proof

|. After this article was sent to press Ref. 8 has come to the notice of the author, This book on “*Many-
valued Logic™ has several interesting examples of three-valued logics—namely due to Lukasiewicz,
Bochvar and Kleene, in which an intermediate state (called 1) 1s introduced in addition to two truth
values T and F. However, the exact behaviour of 1 in the three examples is quite different. On
examination, 1t 1s found that Kleene's 1has all the properties of D in SNS logic and Bochvar’s
interpretation of 1 has all the properties of X in SNSlogic. Ina particular way, the three-valued systems
are complete in the forward direction; but no reverse relationisdealt withby the above authors. When
this 1s also done, the logical system becomes complete only if we take into account all the four states T,
F, D and X.

Thus, our approach, of developing the isomorphism between BA-2 and propositional calculus, is,
in a way, a generalization of some of the special approaches to multi-valued logic available in the
literature. A more detailed account of this, along with further studies on accepted systems of multi-
valued logic, will be published in due course.

2. The program of the 1983 International Symposium on Multi-valued Logic (Kyoto, May23-25, [983)
has just now (April 10, 1983) come to the attention of the author. Inthis, thereisaninvited address by
M. Goto, S. Kao and T. Ninomiya on “Synthesis of Axiom Systems for the Three-valued Predicate
Logic by means of the Special Four-valued Logic” {Preprint not available). Qur results for predicate
logic are even more general, in that it uses an Eight-valued Logic isomorphous to BA-3(2° = 8), which
has the Four-valued Logic iscmorphous to BA-2 as a sub-algebra.




