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ABSTRACT

This article deals with the application of the general m x.n Boolean vector-matrix representation
of the Theory of Relations to Boolean algebra BA— 1, with n X n matrices, A new type of relation
termed “reverse relation™is defined and it is found vitally important for both Boolean algebra (BA)
and logic. In BA, it leads to a new type of non-closure—namely BA-m iteratively leading to a
higher BA-n (n > m) on reversal. BA-1, associated with propositional calculus (PC), necessarily
leads to BA-2 for its full representation, the extended PC which we call as sNs (from syad
(Sanskrit) = doubt), This doubtful state is a new state found to be essential for the completeness of
PC. BA-3 is shown to be isomorphic to quantified predicate logic (QPL), provided the algebra of
connectives is written in terms of what we have designated “canonical states”™, representable by
BA-3 vectors. The algebra of the connectives has 64 *and™ (A(i,j), i,/ = 1to 8)and 64 “or” (O (i, )
connectives, and a consistent, complete representation of QPL in terms of Boolean vectors, and
3 X 3 matrices has been worked out. Here again a new basic state “some” () is found to be
essential, in addition to “all” (¢ } and “none”(®). This state which is there in Ancient Indian Logic
of two thousand years ago, makes Godel’s second (incompleteness) theorem for QPL

understandable from a simple approach.

1. INTRODUCTION

HIS article, 15 in a way, the continuation of the

previous article! published in this journal. In that
the application of Boolean aigebras BA-1 and BA-2
to propositional calculus or sentential logic was consi-
dered. By tnal and error methods, we discovered that
the next higherorder Booleanalgebra{(BA-3)isa very
suitable one for symbolizing quantified predicate
logic and the various connective operators and states
that occur in 1t. When this was done, just as BA-2 led
to two new states, D (doubtful) and X (impossible) in
addition to T and F, in propositional calculus, a new
state, symbolised by 3. (some) was found to be neces-
sary to get a complete set of all states in predicate
logic, in addition to the usual ¥ , 3., and their nega-
tions. This, however, led to eight possible states by
completing the associated BA-3, with four new addi-
tions to the standard four thatare used in QPL, namely
“for all” (v ), “for none™ ( &), “there exists” (3 ) and
“not for all” (A).

Although the requirements of predicate logic could
be cavered by using these eight states and connective
operators (both matrix and non-matrix) as in SNS, it
was felt that the full power of the matrix representa-
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tion can be brought out only by considering a general
n-valued logic which can be representated by BA-n.
Even further, this BA-n and the matrix operators
occurring for it turn out to be still further generaliz-
able by using rectangular matrices of the type m x nin
the theory of relations, connecting m different objects
of one type with n different objects of another type.
Therefore, this general theory of relations will be con-
sidered first. Then its reduction to a system with only
n X n matrices become straightforward. Out of these,
the particular cases of BA-1, BA-2 and BA-3 will be
discussed, from the general standpoint, and their con-
sequences to logtc will then be described. In particu-
lar, the applications of BA-3 to quantified predicate
logic turns out to be very novel and these will be
described 1n some detail.

2 . THEORY OF RELATIONS AND BOOLEAN MATRICES

To keep the tenor of this article at an elementary
level, we shall illustrate the method of applying Boo-
lean vectors and matrices for the Theory of Relations
by means of a simple example, although general
proofs of the stgtements we make can be readily for-
mulated. We take two sets,—one designated P(=ps,
p2. p3, pa) consisting of 4 parents and the other desig-
nated C(= 1. c2. 3. €4, ¢5) consisting of S children.
The forward relation from parent to child, which we
may denote by C (standing for “child of ™) is represen-
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table by a “truth table”, as in Table 1, in which, an
entry 1 or 0 as C;; means that the relation exists, or is
absent between c¢; and p;. Thus, ¢3 is the child of p,
and p2, while ¢1 and ¢z are children of p3 and ¢5 of ps;
¢5 1s not the child of any of p;1 to ps, although it is
included inthe set C = {¢;}. Similarly, for the relation
“parent of ", P.

TABLE |
Truth tables for parent-child relationships

(a) C (Child of}

(b} P {Parent of)

|

"
P2
| P3
Pa

The relations in Tables 1(a) and (b) can be written
as Equations (la) and (Ib) below. In this, the row
vectors << p | and <c¢ | stand for the Boolean vector
representation of which constituents are present.
Thus, the state vector (1 0 1 1) for <~ p ) indicates
that py, ps, ps are present and ps is absent. Then, the
relational matrices in(la)and (1b)are exactly as given
in the two tables, namely 5% 4 for | C| and 4 X 5for
} ). Thus, we have

<p|Cl=<cl!, for Table 1(a) (la)
<cj Pl=<pl, for Table 1{b) (1b)

It is obvious that the matrices | C| and | P| are
transposes of one another, and they represent the two
relationsin {1a) and (1b), which are termed “reverses”
of each other. The relation a Rb read in the “reverse”
direction as bR’a has as its matrix | R’} = | R}, the
superscript ‘t* standing for “transpose”.

The notation of a row vector as a “bra” vector
(< v}, a column vector as a “ket” vector (| v>>)and
the relational matrix enclosed by two vertical lines (as
im ] Z}), follows the Dirac bracket notation in
quantum mechanics (see [1], for {uller details), We
write all equations from left to right, as this is the
order in which logical relations are expressed—as in
“a implies b” (@ =—>b), whichhasthe notational = b
in our pomenclature (sce {1]), with<Za| and <& as
2.¢lement Boolean “bra™ vectors and | Jf asa 2 X2
Boolean matrix, giving <alll =<b].
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We shall discuss two practical uses of relational
matrices that are relevant to logic and Boolean
algebra,

(@) Unary relation and its reverse:

If < p’| is the Boolean vector representing a (par-
tial) ensemble of the full set {p;}, eg. (1 0 0 1), we
may ask the question, “whichi ¢;'s are present, among
the children, of the two parents py and p¢ of this
p’-ensemble?”’ The answer i1s given as the Boolean
vector <c¢’| in Eqn. (2a), which, for
<pl=(001) yields < |=@© 0110 as in
(2b)—namely, only the two children ¢z and cq.

<p'| Cl=< | (2a)

<PI=(100 DN r—> =00 110
(2b)

Note that all the additions and multiplications
involved in the vector-matrix product are as per
standard Boolean algebra BA-1 (see [ref 1] for more
examples), where the matrix | C| is explicitly as
shown below in (3a). The meaning and use of the
matrix | C€| in (3b) will be clear in section 2(b}

0 010060
c 0100

| Cl= (3a)
1 1 6 0 0
¢ 0010
1 10 1 |
1101 1

| Ct = (3b)
0 0 I I I
I 11 0 1

In the same problem, if the question is reversed,
with <7 ¢’| as input, we obtain Eqn. (4a), yiclding the
vector < p”| is given by (4b).

<CIPI=<pt| da)y, <pri=(1 10 1) {3b)

The interesting feature of this reversal of the relation
C to the reverse relation P is that << p7 | in {4b) 15 not
the same as<” p’ | in(2b). The reason, in this particular
ce, 18 that ¢y 18 the son of py but both the parents py and

are present in the set {p,] . One parent {p1) gives
the child (¢3) in the forward direction using the rela-

tion C, but in the reverse duection, the relation P
applied 10 the same child (cg) pives ok the parent py



294

A k

and p2—1n general the maximal ensemble of parents
possible. Thus, the ‘reverse’ relation does not have the
nature of ‘inverse’ in ordinary algebra and the matrix
t Z] goes over into its transpose | Z'1, on reversing
the relation. This property of transpose represeniing
reversal of a relation is vitally important for our appli-
cations of Boolean vectors and matrices to logic.

(b) Dirac (marrix) product:

Suppose, in Table la, we take the {irst of the above
two examples and work out the Dirac product
< p'| Ple™>, as defined in [1], which is repeated as
(5) below for ready reference

<alZib> = E Z a,Z,b,= ko, ascalar (5)

: )

In this, the value of A, can only be 0 or | in Boolean
algebra (the need for the subscript a in ko will be clear
in Eqn. (7) below). If ko= 1, it means that the answer
to the question “Is there at least one @, and one b in the
ensembles a and b, that are related by the relation 2?”
is “yes™. Similarly, k4 =0 means that the relation Z
does not connect any a; with any b; in the two en-
sembles represented by «lal| and <&|, that are
provided.

In the same way, we may form a Dirac product
using the complement of | Z{, namely | Z¢|, where
Z,; =1— Z,, its complement in BA-! (6)
The matrix | Z°€) represents the “non-relation™ of Z,
so thatif thereis I inposition(f,j)in| Z°|,thena,and
and b,arg non-related by the relation Z. We thus have
an equation similar to (5) for kg, namely

<alZ8 | b> =3 2}‘, a,Z,b,=kg (7)

and the properties of kg for Z© are the same as those
of ko for Z.
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(c) Binary relation expressed via Dirac products:

We now consider the truth value of the binary relation
alb, expressed via the state vectors<Za|,< b |, and
the matrix | Z| representing the relafion Z, and its
derived complement | Z%|. The truth value of the
relation 1s expressible in terms of two Boolean scalars
ko and kg, which form a Boolean 2-vector (ko k). In
order to see the various possibilities, three examples
can be taken, as in Sl. Nos [, 2, 3 of Table?2.

Thus, the non-relation (C°) does not exist for the
Row 1, and the relation (C) exists, while the opposite
is the case of Row 2 of Table 2. We shall say that the
truth value is “true” (T) for the former, and “false” (F)
for the latter, which agrees with the idea that only one
of the two—*“relation C” or “non-relation C°®” exists
for these cases. We represent these by the Boolean
vectors (1 0) and (0 ) respectively, as in SNS’.

However, it is possible that both C and C*®are not
absent (Row 3 of Table 2). This gives (¢4 cg) =(1 1),
when state of PCc 15 “indefimite” (D, standing for
“doubtful™). Row 4 shows one more example, namely
of both the relations C and C being non-existent. Itis
easy to show that such a situation will occur only if
either the vector < p’| or < ¢’} is zero for all its
components, when a relation between p and q is
“impossible™—represented by (0 0). The letter X indi-
cates this state.

(d) Summary of Section 2:

Thus, the truth value of a binary relation requires a
BA-2 representation with rwo scalars in the form of
Dirac products so that the relation a Cb = ¢ becomes
representable as (8a) and (8b):

aCb&=(a]| Clb)=/{(cq cg)=c (say) (8a)
where ¢, and c¢g are given by Dirac products:
<alCib>=cy; La|C|d>=cq (8b)

TABLE 2

Dirac product values for four typical examples of the relation C.

(1 1 0 0 0) t O T
O 01 0 1) 0 I F 1
@ 0 1 1 Q) ] ! D

(any values)- 0 0

Logical state
of the relation C

I
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We shalt use (¢ { C{ b) to indicate the SNSstate (cq¢p)
of aCb=c. Also, since the matrix | C*|*=] C}|
1tself, the bracket giving the truth value for the rela-
tion aC*b 1s

(@]l CClb)=(cgcq)=d=cN (&¢)
where ¢, and cgare the same as in (8b) (see {1] for the

definition of SNS negation N).
Obviously, the matrix | C of (8a) can be written as

]CJZE EIC)L#|
ALK

such that each | CAu| has only one non-zero element
at location (A, i) in the matrix. Suchamatrix | Cy,{.
with a single | in 1t, may be called a “singular matrtx”.
In terms of these, we have

(a] C1b)= § S (al Crul B) (8d)
1]

The use of such singular matrices in quantified predi-
cate logic is to be found in section 6.

3.TYPES OF RELATIONS IN BOOLEAN
ALGEBRA

(@) Reversal of a relation, in general:

The above genera! treatment of a relation Z
expressible by an m X n Boolean matrix, can be seen
to be fully acceptable within the range of the mathe-
matics of set theory, Boolean algebra and matrix
theory. However, when the above formula¢ are
applied to logic, they lead to extremely interesting
results. Some of them turn out to be quite novel, not
only in leading to simplified procedures in the mathe-
matical treatment of the theory of logic, but even to
some new concepts in logic itself.

The concept of the “reversal” of relations does not
appear to be generally recognized in the literature. We
saw one aspect of it connected with unary relations
earlier in subsection 2(i), Eqs {(2b) and (4b). Thus the
ensemble << p'| ={1 0 0 1) of parents gave the en-
semble<c’| =(C0 0 ! 1 0)forchildren; but when the
operation was reversed, we’ obtained <{p”{ as
(1 1 0 1), different from < p"]. It can be shown that
< p”| is really the set of “all possible”™ parents of the
children < ¢’{, and that the members of <p’| are
included in <~ p”). This idea that a Boolean vector-
matrix operation gives the maximal set of members
contained in the vector generated by it, is a very
important one for our discussion. The ensemble ol
elements like < p’| and <¢'| form a ‘lattice’ of
abstract algebra. In fact Booleanalgebias torm “fully
complemented distributive lattices™ (See [2]).

(&) Reversal of binary relations:

We now consider the technique of reversing a
binary relation. We start with 8(a, b, ¢). For this, we
suppose that the state of the vector e = (cqcg)is given
and so also is the relation Z. We are then required to
find out the state that can be deduced for <5 | given
that of < a|, or vice versa. Taking the former first, the
relation between a and b can be given, in general, in
terms of Boolean vector-matrix products involving
the matrices | C| and | C¢}, as.in Eqns (92 to b):

c=T yields {a| Cl| Q (La| C|)=b] (%)
c=F yields La| C*) @ (La| C|)*=<b| (5b)
c=Dyields a| C| B <Lal| C*| =1} (5¢)
c=X yields <& | =<0, and <a| =<0 (9d)}

In (9¢c, d), < 1| stands for a state vector with I for all
components, and < 4| for one with 0 for all the
componenis,

In these equations, it 1$ important to remember
that, in general, the vectors < aq)Z|=<d| and
<alZb = | are ‘not complementary to one
another and <{d|e>> need not be a null vector.
Secondly, the vector <7 b | yielded by the 1.h.s’s of (9a),
or (9b) is what may be called the “maximal” vector,
containing all possible elements b; which can be non-
zero. In an actual case, the vector < b’| can hbave I's
for any, or all, of the 4/’ in the maximal vector< b {;
but not all b/'s can be zero (which will correspond to
the case of ¢ = X of (9d) ). Inthis sense, the vital factor
in each of (9a) and (9b) is the second of the two terms
joined by the Boolean product and the first term only
selects out of these, those that gointo the vector< b {.

On the other hand, in (9¢) the result for < b1 18
< 1], which stands for the vector containing unities
for all the elements b (i = 1 to n) of the vector< b | —
namely (I 1 1...1), corresponding to the full set. In
the same way, if ¢ =X as in (9d), the vector < b} is
< 0], which, indicates that the set B represented by
< b is a null set.

(¢) Boolean addition and multiplication of vectors:

Since the n generators of BA~rnare non-intersecting
and oneis notincluded in the other, the corresponding
vectors form a basic set <a,], =1 to n, for the
algebra. In the standard formulation of Boolean alge-
bra®, as a special type of lattice, the only relations
through which these¢ can combine are via the opera-
tions of Boolcan addition ¢ and Boolcan multiphe-
cation (0 {both of which are distributive with respect
to one another), leading to the equations
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<al D b =Ll =aD bi=¢y,
i=lton (10)

<a| Qb =Ld|==a, R b;=4d,
i=1to n (11)

All the axioms of Boolean algebra are satisfied by the
n-vector representation, if it is noted that complement

< a‘| of <a| can be defined by

<a°|=(af,...af...af,),

where ﬂfz 1—a;

(12a)
(12b)

and the set of all 2" vectors of BA-n is closed with
respect to the application of the operations in (10),
(11), and (12).

As regards matrix multiplications of the type we
have envisaged in Section 2 (namely by n X nmatrices
n BA-n), they employ only the types of elementary
operations Characteristic of BA-1, via @ and X, app-
lied to 1 and 0 of this algebra. Hence, the set of 27
vectors of BA-n is closed with respect td the opera-
tions of these Boolean matrix multiphcations also.
However, with respect to its application to logic, Boo-
lean matrix operators and the symbolic Bodlean oper-
ators of BA's, have entirely different interpretatians,
as will be shown below (See Sections 6(d)}, (¢), (f)).
(d) Closure of Boolean algebras:

The reversal of the binary relation (a| Z| b)=e="
(ca cg), may be symbolically represented by

(c| Z|a)=<b] (given ¢q, cgand <al) (13)

£qgn. (8) has also another reverse, denoted by the
operator Z', connecting ¢ and <Zb ] to give<Za|, the
corresponding matrix being | Z'|. Similar to (13), we
can write this relation as

(c| ZY b)y=<Za| (given ¢4, cgand << b|) (14)

Since reversals of matrix operators representing
binary relations yield only vectors contained in the
Boolean algebra, the algebra is closed with respect to
these also. On the other hand, the algebra is not closed
when the Boolean operations P and &) are reversed.
This 1s not discussed here, but the consequences are
indicated for the particular case of BA-2, in paper’,
and its generalization is indicated there,

4 .VECTOR-MATRIX FORMALISM APPLIED TO
PROPOSITIONAL CALCULUS

This aspect has been discussed in the previous
paper' and will not be considered in detail here. We
shall only comment on the fact that BA-1 readily

._———h-——l_—_.w

represents the classical sentential calculus as discussed
in standard books on logic™*, while BA-2 is needed
for its extended form, namely SNS. It may be
mentioned that the matrices discussed in the previous
section for the theory of relations are in general
rectangular (m x n), but for Boolean algebra of
genus-n (BA-n), the number of states possible is nfor
all entities, and hence it is representable by n-element
vectors and n X n square matrices. The other formulae

in the previous two sections are unaltered.

SNS has four states, T, F, D, X corresponding to the
four.different vectors (1 0), (0 1), (1 I)and (0 0) of
BA-2. This set of states is closed with respect to 2 X 2
Boolean matrix multiplications, i.e. logical relations
of the forward type. From equation (9a-q), itis easy to
show that reverse relations corresponding to all the 16
matrix operators also lead to one of the four states,
represented by these vectors. This can be taken as a
proof of the closure of propositional logic.

On the other hand, when the standard Boolean
algebraic connectives O and & are applied to SNS,
they lead again only to one of the four states, as shown
in Table 3. In this case, when reverse operations are
considered for these two logical operators which have
been given the name “unanimity” (U) and “vidya”
(¥), something not contained in BA-2 is produced.
These operators are the same as O and A for PC with
BA-] representation, but are quite different when
applied to the four states of SNS. In fact, Uand ¥V are
not the same as “or” and “and” in SNS, and lead to
4 X4 truth tables and produce states outside even
BA-2 on reversal,

In order to illustrate how such a state outside BA-2
occurs when a relation a Vb = c¢ is reversed, we shall
consider the case where ¢=T and a=T, and we ask,
“What i1s c¥Va=Db?" This is readily answered by
looking at Table 3, and we get the state “T or D, but
not F”. Similarly, we can also obtain *F or D but not
T”, from the application of the reverse ¥V operator. If
these two are combined by the connective V, we
obtain the state “D, but neither T nor F”, whose
complement is “T or F, but not D", We thus obtain
four new states 1n addition to the four standard states
T, F, D, X isomorphic to BA-2. These give a total of
eight (= 2°) states, which can be shown to be isomor-
phic to the 8 states of BA-3,

Therefore, if the Boolean operators &5 and §Q are
reversed in BA-2, we get not only states occurring in

BA-2, but also four others, leading to a complete set
of states of BA-3.
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TABLE J.

Truth 1ables for unanimity (U) and vidya (V)
worked out using the algebra of BA-2

(b) a’Ua”=al

(@) a’Va”=a*

(@) Property of closure of Boolean algebras including
reverse operations:

Just as BA-2 with 3(=2%°—1) non-impossible
elements leads, by binagy reversal of the operation of
Boolean ), to BA-3 with 2°— 1 {= 3) generators and
7(=2"— 1) non-impossible elements, the process can
be extended to give a series of BA-n's successively,
with n=17, n(=2"—1), n(=2"—1), etc.,
generators, producing an infinite sequence of Boolean
algebras (BA-n) with n = 2, 3, 7,n’, njetc., going upto
an infinite value for n. Hence, if “reversal” of all
relations is an admissible operation (similar to
“inverse” in ordinary algebra, group theory, etc.), then,
Boolean rings (BA-n) with n=2, 3, 7... are inter-
related, and any one¢ leads necessarily to the next
higher one, on including the results of reversing the
relations in the earlier one.

Thus, if a completely closed Boolean algebraic
systemn is at all possible, it must necessarily have an
infinite number of elements. This is similar, for
example, to the set of positive integers which has no
last member, although every member of it ¢an be
described and mathematically utilized, in principle.
We believe that this new concept of non-closure of
Boolean algebras of finite order (2™), has not been
pointed out’earlier in connection with studies on

Boolean algebra.

However, if only matrix reversails are demanded
(but not reversals of the Boolean operations@ and §6¢
in BA-n), then the Boolean algebra generated by n
basic vectors in our vector-matmx formalism s
complete gnd closed. This general theorem for BA-n
has its repercusions in showing that BA-2and BA-3,

which can represent, according to us, PC and QPL of
logic, are complete and closed, even including unary

reversal and binary matrix reversal. This theorem
regarding BA-»r indicates that logic as it 1s normally
understood is essentially a closed system. The only
way it is open and leads on to a higher order fromany
BA-n is vig the reversal of the forward operations of
P and &) in that BA-n system.

Thus Boolean algebra, mathematical Iogic, and
Boolean vector-matrix formalism, are all isomorphic
with one another and many theorems regarding logic
can be derived from the representation—and this
makes thinking and logical analysis much more easy.

S.ESSENTIALS OF Q_PL WITH REFERENCE TO BA-3

(¢) Srandard oprL states:

The two quantifiers that are used in the standard
theory of QPL are “for all” ( Wwx) and “there exists”
(3x). These “quantify” the sentential predicate, which
we may denote, for the variable x, by (sx) with s
standing, in general, for “sentence”, There is also a
third entity, that is applied in front of the quantifier,
which has two states, corresponding to an affirmation
or a negation of the quantifier. We suggest the name
“sign™ for this and use the symbol =} to denote.
negation—e.g. iy x) (ax=>bx) or =(3x)
(ax&bx). The negation of the sentence s, where
necessary, 1s indicated by the PC or SNS negation sym-
bol ] before s. However, the eight quantified forms
that are obtained using {y x), { 3x) "} and =} are not
independent. They form four pairs of equivalent state-
ments, as given in {(15a to 4d).

(vx)(sx) ==(3x)}{"18x) (15a)

Ry x)(sx) =(Ix){T5x) (15b)
(¥ (TIsx) = F(Jx)(sx) (15¢)
Ty xMTI8x) =(3x)(sx) (15d)

The quantifier “for none™ (Px), standing for “pot
there extsts” viz. (3 x), 1s used quite often, and this
suggests that we must coin a symbo} also for "not for
all”, and we employ (Ax) for this, standing for

Y x).

We have used two differentsymbeols < and "}in the
above examples, and these two have entirely different
algebraic properties, although they both have only
two states—namely “yes™ and *no”. The tormer
negates only the state of the quantifier~~ e.g. (¥ 1)
means “not for all™ and not “far all, not™, The latter
acts only onsx, The two are interrclaged (see fater for
precise detals), Thus we have
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Y x)(sx) =(3x)(T]sx) (16a)

(vx)}{Isx} = (Px)(sx) (16b})
The second of these demands that every x has the
property “not s x”, while the first only requires that
there are some x's having the property “not §x".

A little reflection will show that the state (¥ x) 1s
implicitly assumed in every statement of propositional
calculus, without mentioning any particular quanti-
fier state with reference to it. Thus “men are mortal™is
equivalent to saying, “all men are mortal™. We will
find this property of (' x) thatit is an unstated quanti-
fier of propositional calculus very useful in deriving
relations between statements in PC and statements in

QPL.

(b) Boolean vecior represeniation of standard QPL
states:

The statements of QpLin the standard form, such as
those in (15) and (16) can be represented via BA-1,
BA-2 and BA-3 vectors as follows:

(1) We use sNs for s x which is a statement in PC,
and this requires two symbols so and sg, written
simply as (a 8), for defining it, with four truth values
T, F, D, X. The negation operator ~| for s xisthe SNS
operator N corresponding to the BA-2 matrix | N]

(see ref. 1).
(i) As will be clear from the discussions in the next

section, we find an absolute need for BA-3 to repres-
ent the quantifier. Although we have needed so far, in

our discussions, only four quantifier states ¥ , 3, ¢
A, they do not form a complete Boolean algebra of any
genus, and are properly represented only in BA-3.
Preliminary studies indicated that their properties are
representable by the BA-3 vectors:

V=1 00),3=(10),d=001),
A=(0 1 1) (17)

Simultaneously, the other negation operator =\ is the

BA-3 complementation operator (~), whose effects
we denote by a superscript ¢, or as will be seen in the

next section, by the operator M. The effects of this
operator is to change 1 100 and 0 to 1in all the three
vector components ¢.,, gs. g, of the quantifier q,
written as (', 8', €'). It is readily verified that

VE=A, A=V, 3=, ¢¢=13 (18)

(The reason for the primes in ¥, 8", € istodistinguish
the quantifier in the standard form from that in the
canonical form which will be defined in subsection (¢}

below.)

(i) We shall use an one-element vector ({) to
denote the “sign™ of the standard form, associated
with the negation symbo! T. Thus {=1 indicates
affirmation and (=0 indicates negation of the
quantifier.

With the above definitions, a quantified state @’ in
QPL, expressed in the standard form adopted in all
textbooks, requires six parameters (q;), (95 954:) (qa
g;.) to represent it. In this, every one of the compo-
nents from ¢,to q;is a Boolean variable in BA-1.
having only two possible values 1 and 0. Where conve-
nient, we shall represent the state in the “standard”
form by ({) (' {’ ¢') (a B), in which the primes for v,
&, € are used to distinguish this from the “canonical™
form (¥ & ¢€) discussed in the next subsection.

It would appear, from the 6-clement descrlpuon of
q in the standard format, that there are 2° = 64 possi-
ble different quantified states. Actually this is not so
and only eight of them are distinct, out of which four
cover all the standard quantified states employed in
the literature for standard QPL. These features are
described in the next subsection 5(¢), where we shall
use the term “extended”™ QPL ( EPL) If it 1s necessary to
draw attention to the extra four non-standard states
of BA-3 specifically.

(¢) Interrelations between standard QPL staies.

Out of the 64'possible standard forms, 16 are espe-
cially interesting in that the treatment of quantified
predicate logic in the literature is based only on these
just as propositional calculus uses only two states T
and F in the standard literature, while we find the need
for two more states D and X, when reverse rclations
are taken into account. These 16 can be obtained by
taking the four quantifier states (¢ x), (Ax), (3 x)
(@ x) and attaching, in front and after the quantifier
symbol, the BA-1symbols =} and ~| where necessary.
Table 4 below lists these 16 different forms in QPL, of
which there are four equivalent forms of each of these
states, which are interrelated to one another by four
equivalence operators, called “modifiers” £ g, €N,

Em, EL.

in each row of this table, there is just one entry which
does not have negation either for the sign or for the
sentence. In this particular form (enclosed in a box),
the affirmative sense occurs for the quantifier and the
sentence, and hence we abstract the quantifier part
alone of this, and use it for the name of the full
quantifier predicate state, which is represented, in the
standard form, by all the four entries in that row, and
which are logically equivalent to one another. This is
shown in the second column of the table which
requires only three components v, §, e. We name thus
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symbol as the “canonical” form of the state, represen-
table by just one three-element Boolean vector (y 6 ¢)
of BA-3. the primes on (¥’ &’ ¢') which occurs in the
standard form have been removed while expressing
the QPL term in the canonical form.

The four equivalence operators € g, €1, Em.
€ n. interconvert the standard forms that are equival-
ent into one another. They form a group isomorphic
to the well-known “Four-group™, with the following
properties:

Eg= €= Ey= E{= E; (19a)
EmEN= EN Eyq= &y (19b)

EnEL= &L Ex= &y

In fact the four canonical states “for all” (), *for
none (P), “not for all™ (A) and “there exists”(3), which
are themselves related by QPL operatorg, E, N. M, L,
are shown in Column 1 of Table 3. If now the above
four states represented by canonical vectors in
Column 2 of Table 4 are added and multiplied by
Boolean operators (b and X we get four more states.
The names of these, as well as the new symbols coined
for them, are shown in figure 1.

They are listed in Table 5 as the Boolean vectors
comprising the representation of the 8 states of EPL
(EPL standing for “Extended”™ Quantified Predicate
Logic). These have been given the symbols g(1) to q(8)
in that table, and the states into which each one goes,

when operated by the EPL operators, E. N, M, L. are
also shown therein. In fact Table 5 is a complete truth
table {or these operators.

Figure 1. Schematic representation of the 8 possible
states in EQPL.

The four new states of EPL that have been thus
obtained have the following properties. The most
Interesting is the new basic state ¥ (for some), in
addition to the two standard ones V (for all) and &
(for none). The state ¥ g(8) means that .only some
exist, but not all or none. If we take the complement of
“some”, we get “all or none” (q(4)) indicated by the
symbol 8. Finally, we have the indefinite state (q(7) or
A) which is obtained by adding all the three basic
states ¥V , X and @, and a statement in this indefinite

TABLF 5

Boolean vectors for the 8 states of ort!

Name of
quantifier

For all

q(2) Not for all |
q(3) For some |
q{4) All or none 0
q(5) For none | 0
q(6) There exists (1 1
q(7) Indefinite (1 1
q(8) Impossible O O

Sl e e iz il

0)

0)

Symbol of state when operated by

R
E N M

N _
v | & A 3
A | 3 A o
3 2, L, 9
0O &) p) )3
& v 3 A
3 A P Y
A A %, %,
%, %, A :’.\.-_l

- 19 —

Each of the four pairs consists of a set of two mutually complementary states—e.g. Y *=A 2= $*= 3

Ac=¢
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state (A x) (s x) has absolutely no logical informatjon
content for the term denoted by § x. However, antici-
pating the discussion in the next section, if the vidya
operator (X ) is applied between this vector (I | 1)
and one of the other seven states (y 8 ¢), then the other
state (y § €) will be the output. Simlarly, the “impossi-
ble’ state g(8) () is obtained by taking the intersec-
tion of al] the three basic states ¥, X and . Since they
are mutually non-overlapping, their intersection will
be the null set &, corresponding to the “impossible”
state in logic and denoted by the Boolean vector
(0 0 0) of EPL.

Before considering the effects of 3 X 3 matrix oper-
ators and the Boolean symbolic operators P and &
on the eight BA-3 vectors representing (in the canoni-
cdl form) the 8 states of EPL, we shall classify the 64
possible quantified terms in the standard notation,

including the 16 of Table 5, which can occur in EPL.
Thus,

(i) Quantifier isone of V, A, A, 3of QpLand s=T
or F, sign=10 or [. These 16 were considered in
Table 3, and lead only to 4 states.

(11) Quantifier is one of the four new states of EPL,
ands=Tor F,sign=0o0r !, Thesealsolead only
to four standard states {2 x) (sx), (Ox) (sx),
(A x)(s x) and (Jx) (s x), each of which produces
a set of two equivalent standard forms, by the
application of the modifers Eg, &N, Epm, EL.

(iif) Quantifier is any one of eight, sign either “yes” or
“no” (0 or 1) but s = D. Allsixteen of these lead to
the same canonical state A(= (Ax) (sx)).

(iv) Quantifier is any one of ¢ight, sign either “yes” or
“no” (0 or 1), but s = X. Again all sixteen lead to
the same canonical state (= x) (sx)).

Just as with the set of states (i), the propertics of
those in (i1), (ii1), (iv) above have been formulated by
us from an examination of the logical contents, and
equivalences, of the relevant standard forms. The
effect of s = D can be explained by saying that if the
statement s has a doubtful state and can give no
information, then it converts itself automatically into
the universally doubtful quantified state A, Similarly
s = X leads straightaway to the impossible quantified
state @ . Further details are reserved for a more exten-
sive presentation elsewhere.

(d) Canonical states of EPL and their use with
connectives.

Since the eight canonical states, isomorphic to the 8
states of BA-3, cover all the standard forms of terms
in £pPL, we shall only consider connective operators
(unary and binary) which interconnect these
canonical states. While doing this, we shall indicate

R

how all the well-known connectives of quantified
predicate logic are covered and their properties (as
envisaged 1n standard presentations on the subject)
are all incorporated in our formulation. We shall first
indicate how a standard form @’ is converted to its
canonical form A and how a unary connective Z is
applied to it to obtain the canonical form b of the
resulting term, which can then be modified into the
required standard form.

This is 1llustrated by an example in Table 6 (a, b, ¢).
The problem to be solved can be stated in words as
follows:

We are given that “For all x, 8 x is true implies that
there exists ay such that by is true” (Step (b)). For
this relation, the input is “There does not exist any a x
that i1s false™ (Step (a)), and we are asked to find out,
given the quantifier state { ) of the input, what is the
nature of by, and the sign of the guantifier (Step (¢)).

The three stepsinvolved are indicated schematically
in Table 6, the most important of which is the repres-
entation of the connective involved, namely “implies”
in Step b. Anticipating the form of this (namely one of
the sixty four 3 X 3 matrices for “imples™—see Sec-
tion 6), we state that it is | (1, 6) in the present case, the
indices 1 and 6 standing for ¥V =q(1) and 3 = q(6),
which are connected by it. Since this BA-3 matrix
requires that both the input and output vectors are in
BA-3, ie the canonical form, Step (a) applies the
“canonizer™ first to convert the input from the stand-
ard form to the canonical form. The algorithm for the
canonizeris given in Part A of Table 6 in Section 6(b).
Similarly, when the output comes out in the canonical
form, the “standardizer” of Step (¢) converts it into the
required standard form. The algorithm for the stand-
ardizer is given later in Table 6, Part B.

Although this example does not involve all the
intricacies related to problems of this kind, it gives the
essence of our procedure, and we obtain the required
result in Step (¢)-—namely “Not for all y is the state-
ment by false™.

The operator I(1, 6) is a 3 X3 Boolean matrix.
Stmilarly, other connectives such as “and”™, “or",
“nand” etc., of EPL are also matrix operators. These
are discussed in Section 6({c), where their nature is
derived physically by inspecting their expected logical
nature. In doing this, we apply the procedure nor-
mally adopted in theoretical physics —namely of exa-
mining the properties of the connective as It is
considered in standard QPL, and then giving them a
mathematical interpretation using BA-3 for FPL
(which includes QrL). In this sense. our method of
approach is similar to the use of algebraic formulae
and equations in Cartesian analytical geometry, for
solving problems in pure geometry. On the other
hand, standard treatments of fogie v theorenis follow
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TABLE 6

Example of a QPL senience in an argument implemented via canonical terms and connectives

Description Logical content and
of sub-step Boolean algebraic representation

[ C
o mized (30 (89  ——3 (V2 (ax
OU10)O1) =—— (1 0 0)

(Standard form) (Canomzer) (Canonical form)

p—

(b} Canonical v (x) - > ()
connective (1 0 0) (.6 = (10 (1, 6=

apphed (Canonical) (Connective) (Canonical)
(c) Output S -
standardized 3(») (by) — =(vy) (T 1by)
S
(1 10) > Moo DNn
(Canonical form) (Standardized) (Standard form)
the method of Euclidean geometry in deriving proofs method will solve problems very readily as will be
with existence conditions rather than giving a tech- shown in Section 7.
nique for working out problems. We belive that our References are all given at the end of Part I1.
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