Thus the longer columns with slow flow-rate has allowed better separation of variably sized molecules. Therefore the use of ion exchange-cum-molecular filtration is highly advantageous in the fractionation of venoms. Details of these findings are discussed elsewhere. The authors wish to thank Dr T. R. Ramaiah, Professor and Head of Department of Biochemistry, University of Mysore, for his kind help. One of the authors (RMK) is thankful to CSIR, New Delhi, India for financial assistance. ## 23 June 1982 - 1. Kini, R. M. and Gowda, T. V., J. Chromatogr., 1981, 216, 395. - 2. Lo, T. B., Chiou, S. H., Chang, C. S. and Hsu, H. P., J. Chin. Biochem. Soc., 1976, 5, 74. - 3. Moran, J. B., Pang, S. Y. Y., Martin, D. W. and Geren, C. R., *Toxicon*, 1979, 17, 499. - 4. Achyuthan, K. E., Ranganatha Rao, K. and Ramachandran, L. K., Indian J. Biochem. Biophys., 1980, 17, 228. - 5. Kini, R. M. and Gowda, T. V., Indian J. Biochem. Biophys., 1982, 19, 152. - 6. Miller, G. L., Anal. Chem., 1959, 31, 964. ## SCANNING ELECTRON MICROSCOPIC STUDIES OF ARCHAEAN LIFE FORMS FROM KARNATAKA, INDIA R. SURESH, S. SAMBE GOWDA* AND T. P. SUNDARA RAJUT Atomic Minerals Division, Hyderabad 500 016, India. - † Department of Geology, Central College, Bangalore 560 001, India. - *(Deceased) OFIEN, an investigator engaged in the study of Archaean life forms, faces the problem of whether a morpho-type preserved in a rock specimen under study in thin sections, is really a structurally preserved organism or is related to other natural inorganic processes. As the scanning electron microscope (SFM) can produce high magnification, high resolution, and depth of field, it aids in identifying the true nature of the morphotype under examination. It also helps in establishing the relationship between the matrix and morpho-type. The purpose of this paper is to present the results of a study, using the SEM, aimed at eluci- dating the real nature of some suspected organic life forms. Samples of chert from Dodguni (Long: 76°45'E and Lat. 13°15'N: Survey of India toposheet No. 57 c/14) situated within the Chitradurga schist belt of Archaean age in the Tumkur district of Karnataka, were considered ideal for the study, because of the presence of algal life forms in them reported by Pichamuthu¹ and Gowda², but considered by some to be mineralogic artifacts^{3,4}. The samples were polished and etched with HCl for 5 to 6 hr and then treated with HF for 10 to 12 hr and the etched surfaces were washed thoroughly with distilled water and given a gold coating 200 to 300 Å thick. Photomicrographs were taken under a JEOL scanning electron microscope. Figures 1,3,5 are thin section photomicrographs of the chert taken under microscope. Figures 1 and 3 are filamentous forms and figure 5 is a globular structure. Figures 2 and 4 are SEM micrographs of filamentous algae taken from etched surface of the chert. Figure 6 is a spheroidal type. SEM micrographs clearly distinguishes between the filaments and the matrix as well as between the globular bodies. The syngenetic nature of the algal filaments are quite obvious from the SEM photomicrographs. These observations negate the possibility of these features being mineralogic artifacts. Had they been mineralogic artifacts, they would have been lost during the strong HF etching and HCl etching and would have appeared as a part of matrix rather than standout predominantly as filamentous and globular structures amidst the etched out matrix material. Scanning electron microscopic studies clearly establish, that the algal filaments reported earlier by Pichamuthu¹ and Gowda² in the Archaean Dodguni cherts of Karnataka are real microfossils but not mineralogic artifacts as considered by Schopf³ and Prasad⁴. The authors thank Dr. R. V. Krishnan of National Aeronautical Laboratory for providing laboratory facilities and Professor C. Naganna, Head of the Department of Geology, Bangalore University for encouragement. Thanks are also due to the U.G.C. for financial help and to Dr. S. Viswanathan, Atomic Minerals Division, for critical evaluation of the script. 18 May 1982; Revised 10 September 1982 Figures 1-6. 1. Thin section photomicrograph of Dodguni-chert resembling filamentous structure of Gunflint minuta Barghoorn. 2. SEM micrograph resembling branched filament of Oscillatoria. 3. Thin section photomicrograph of filamentous structure resembling Oscillatoria. 4.SEM micrograph of filamentous structure resembling Oscillatoria. 5. Globular structures seen in thin section resembling Huroniospora macro reticulata Barghoorn Quit. 6. SEM micrograph of globular structures resembling unidentified spheroidal object from the Archaean Onverweacht Group of the Barberton Mountain Land of South Africa. ^{1.} Pichamuthu, C. S., Proc. 29th Ind. Sci. Cong., 1942, 121. ^{2.} Gowda, S. S., Proc. Int. Symp. Taxon. Biol. Blue-Green Algae, 1st Madras. India, 1970, 42. Schopf, J. W., Annu. Rev. Earth Planet Sci., 1975, 3, 213. ^{4.} Schopf, J. W. and Prasad, K. N., *Precamb. kes.*, 1978, 6, 347.