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HIGH STRENGTH DEFECTS IN NEMATIC LIQUID CRYSTALS

N. V. MADHUSUDANA AND R. PRATIBHA
Raman Research Institute, Bangalore 560 080, India

ABSTRACT

After giving a brief introduction to the present state of knowledge of defects in nematic liquid
crystals, we report the first observation of disclinations of strength + 3/2 and + 2 in mixtures of
several nematogenic materials with a nonmesomorphic compound having plate like molecules.

EMATIC liquid crystals are charactenized by a

long range orientational order of anisotropic
molecules’s2, The simplest method of identifying the
nematic state is by making observations under a polar-
izing microscope on a thin sample of th¢ matenal
taken between a slide and a covershp. If the glass
plates have not been specially treated to get a uniform
alignment of the medium, one usually observes a iyp-
cal ‘texture’ or a pattern of characteristic defectsinthe
alignment of the medium. For sufficiently thin
samples (~20 p or less), a schheren texture is
obtained, in which two or four dark brushes are seen
to emerge from some points in the field of view (figure
1). The points which are usually line defects viewed
end-on are called disclinations?.

The local direction of orientation of the molecules
at any given point is represented by a unit vector n,
called the ‘director’. Assuming that nis in the plane of
the sample it is clear that the dark brushes occur in
areas in which n is either parallel or perpendicular to
the plane of polarization of the incident beam.
nchanges its orientation continuously around any dis-
clination, and for ensuring continuity in the medium,
it is obvious that the change in the orientation on
going once around any given defect should be a mult-
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Figure 1 Schiieren texture of a mixture of 15 weight
% of THA with p-cyanobenzylidene-p’-
octyloxyaniline (CBOOA) at 55.8°C. Hlumination
with sodium light ( x 300). Note the dark rings around
disclinations of strength + |,

ple of 7, assuming that the nematic director is apolar.
If this angle is 7t, we get two dark brushes, while if itis
27, we get four brushes, eic.-The observation of
defects with two brushes 1s indeed a proof that the
director is apolar, i.e., nand — nare physically equi-
valent. The ‘strength’ of the defect S is delined as 1 /4
times the number of brushes emerging from it. The
sign of the defect is taken to be positive if the brushes
rotate in the same direction as that of the crossed
polaroids and negative if the brushes rotate in the
opposite direction. The Schlieren textures were stu-
died soon after the discovery of liquid crystals, and
detailed descriptions were given4,5. Upto the present,
only defects of strengths *+ 1/2 and % 1 appear to
have been found in nematic liquid crystalsts?s®ol,

The curvature of the director around a given defect
costs elastic energy. The nematic is characterized by
three curvature elastic constants k;;, Kz, and kj, cor-
responding to splay, twist and bend.! They are gener-
ally of the same order of magniture,~10"%dyne. Inthe
one constant approximation, it is assumed thatk,, =
k., = ks, = K, say. It is then particularly siumple to
apply the theory of curavature elasticity to get solu-
tions for the director field around disclinations. If
is the angle made by nwiththe x-axis,and « theangle
made by the radius vector connecting the given point
to the centre of the defect with the x-axis, the solutions
take the simple form

Jy = S a+C (1)

where C is a constant.3 The director ficlds around
disclinations of various strengths are shown schemati-
cally in figure 2. Except in the case of § = | delect,
changing the value of € merely rotates the entire pat-
tern. In the case of § = 1, the pattern utself changes
with C (see figure 2). In the present approximation, n
becomes multiple valued at the ongin, and hence leads
to a singularity. Assuming that a *core’ region extends
from the orgin to r,, the energy per unit length of an
isolated dischination hine is given by!.®

W = W, + ~K§S?In(R}r,) (2}

where I, is the energy/unit length from the core
regton and R is the size of the sample. Assuming that
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Figure 2. Schematic diagram of the directo r fields around disclinations of various strengths according to the
solution given by Eq. (1).
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W . makes a relatively small contribution, W has a
loganlhmw divergence with the size of the sample or
as r>0. For a given size R, it is clear that disclinattons
with § = #1 cost 4 times the energy of those with § =
+1/2 in this approximation. However, experimentally
S = 1 disclinations are rather easily obtained (see
figure 1) and are quite stable.

At this stage, we can point out that n need not be
confined to a plane normal to a disclination line tf its
strength has an integral value (S=%1,X2 etc.). As we
can easily verify with reference to the patterns shown
in figure 2, in such cases a tilted n is a topologically
allowed solution. However, in the case of disclinations
with half integral strength (S=+1/2,+3/2, etc.) any
tilting of n is not allowed topologically. Going 1n a
closed circuit around a disclination of half -integral
strength, a tilted director whose projection in the plane
of the paper (see figure 2) has changed itsangle ¥ by
(or 3x) cannot match with the initial director. The
physical implication of this difference in the topologi-
cal structure of integral and half-integral disciinations
is that the director can collapse in the third dimension
(normal to the plane of the paper in figure 2) for
defects with integral strength. nisthen along the z-axis
at the centre and is no longer 2 multiple-valued func-
tion, and there is no singularity. Indeed calculations
based on the theory of elasticity?;!0 yield in such a case

W = IK for S=+1
and (3)
W= K for S= -1

independent of R, the length over which the collapse
takes place. If the structure has a singularity and the
core radius is of the order of a few molecular dimen-
sions (r.~50 & say) and the size of the sample R is ~
50 microns, we find from eq. (2) that the line energies
for § = +1 are definitely greater than those given by
the non-singular solutions (Eq. 3). Experimental
results 2-'% generally confirm this conclusion: for
example, in figure I, which was taken in monochro-
matic radiation (\ = 5893 A), several dark rings can be
seen around § = ldisclinations. The bands arise from
a smooth reduction in the effective birefringence of the
medium as the director collapses towards the z-axis as
the centre is approached. On the other hand, the
changes in the birefringence near § = £1/2 singulari-
ties ar¢ confined to a rather small region around the
centre. Indeed often the singular line corresponding to
S ==*1/2 can be seen side-on as a ‘thread’ lying in the
plane of the sample.

Real nematics have anisotropic elasticity (k,, # k3
# ki ) but an analysis including the anisotropy8.!0,!!
will not alter the above conclusions, even though it
affects the magnitudes of the energies. (The aniso-
tropic elasticity has important consequences for the
interactions between defects!25'3 which we do not con-
stder here.) Another interesting result of the non-
singular solution for S = *1 is that the corresponding
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energy (Eq. 3) can be lowerthan the sum of energies of
two-singularities of the same sign (Eq. 2) Indeed it is
sometimes observed®»!® that two half singularities of
the same sign merge together to give rise to a | disch-
nation, especially if there i1s a three-dimensional dis-
tortion in the director field in the region between the
two half singularities, !4

Varigus other details of the defect structure in
nematics have been discussed in review articles by
Kleman.é:? In particular, the nature of the core around
the singularity or § =+1/2 defects is not known. It is
sometimes speculated that the core region is in the
Isotropic phase,2s0

With this background, we now report our observa-
tion of disclinations of strength > 1 in some nematic
mixtures. These are probably the first observations of
such defects in nematic liquid crystals.

The high strength defects were observed in mixtures
of the nonmesomorphic compound 1.4,9,10-
tetrahydroxy-anthracene (THA for short, also called
leucoquinizarin) with various nematogenic com-
pounds. THA was purchased from Messrs. Aldrich
Chemical Co. and has a melting point of ~ 147°C
and was mostly used without further purification. The
molecules of this red-coloured compound are rigid
and flat. The mixtures typically contained ~~ 10-]5
weight precent of the nonmesomorphic compound. As
a result of adding THA to the nematogenic com-
pound, the nematic-isotropic transition temperature
(T,,) was drastically reduced, by ~ 30°C or more.
Further, there was a considerable range ( ~ 20° C) of
coexistence of the nematic and isotropic phases. All
the observations were made using a Leitz Ortholux
Polanzing Microscope, Model 11 POL-BK in con-
junction with a Mettler FP-52 hot stage. Nematic
droplets formed as the sample was cooled from the
1Isotropic phase, and slowly grew in size as the temper-
ature was further lowered. There was a strong ten-
dency to form the schlieren texture (see figures 1,3-6).
Further, in many samples one could see defects with
s1x brushes as the isotropic phase disappeared on cool-
ing. They were quite stable, and remained intact even
when the sample was cooled by ~~ 30° C below the
temperature at which the entire sample was trans-
formed to the nematic phase. We have observed both
positive and negative disclinations with six brushes,
i.e., with strength + 3/2, Observations with sodium
light did not reveal any dark bands around the centre,
i.e., there was no visible cotlapse of the director in the
Jradimension. This is in conformity with the expecta-
tion from topological arguments which we mentioned
earlier. Hence one could expect that these defects also
have singularities at the centre and the director pattern
around such defects would be as shownin figure 2. In
that case the line energy would be given by Eq. (2), in
the one-constant approximation. It 15 clear that the
elastic energy carried by a 3/ 2 defect would be consid-






