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ABSTRACT

The effects of Hall current and permeability of the porous medium on combined free and forced
convective hydromagnetic flow in paraliel plate channei have been studied, when there is a uniform
axial temperature variation along the channel walls. The induced magnetic field and heat transfer
characteristics in the flow are determined. Expressions for the shearing stress components have also
been sought. The effects of porous medium and Hall parameter on the velocity, the induced
magnetic field and shearing stress 1s interpreted with the aid of graphs and a table,

INTRODUCTION

LOWS through porous media are very much

prevalent in nature and therefore, the study of
flows through porous media has become of principal
interest 1n many scientific and engineering applica-
ttons. A general equation of motion for the flow
through porous media has been derived! and the
results have been applied to some basic flow problems.
The effect of buoyancy forces on a forced convective
flow of an electncally conducting fluid in a horizontal
channel with a linear axial temperature variation
along the wall under the influence of transverse mag-
netic field has been investigated2. Gupta’s problem has
also been studied by taking Hall effect into account?,
Recently, the flow of a rarefied gas through a channel
with Hall effect has also been studied?. Inall the above
studies, the effect of normal density fluid was consi-
dered but attempt to analyse the effect of Hall currents
in case of a flow through porous medium does not
seem to have attracted any attention.

Mazumder et al3 did not constder the flow through
porous media. So the purpose of the present study isto
investigate the Hall effects in porous media. The com-
bined effect of them gives rise to an interesting pheno-
menon which 1s cansistant with the physical situations
of the problem.

MATHEMATICAL FORMULATION OF THE
PROBLEM ANDITS SOLUTION

We take x- and y-axes and transverse to the parallel
honizontal plates coinciding with the planes y = £ L.
A uniform strong magnetic field 4 ,1s imposed paral-
lel to y-axis. Let (w, v, w) and (I, H,, H,) be the
components of the velocity g and the magnetic field /f
respectively. Atalargedistance from the entry section,
the flow will be fully developed and in the steady state,
all the physical quantities (except pressure) depend on

y only,

The equations of momentum and magnetic induc-
tion? for fully developed steady flow through a porous
medium of permeability K in rationalised MKS units
are reduced to:
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where g is the coefficient of viscocity, g, the magnetic
pcrmeability, P the fluid density, ¢ the fluid conduc-
tivity and m=wT (Hall parameter), w the cyclotron
frequency, T the electron collision time, If we assume
uniform axialtemperature variation along the channel
walls, we may take the temperature in the {low as
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T — Ty = Nx+ $ (y), (6)

Where N s a constant.
Using (6) and the equation of state

= po [{ — B8 (T — Ty)] (7)

in (2) and integrating, we get
p=—ps8Y+ P 88Nxy+pogBJ/bdy

ol I S

~ L (H2 4 )+ FW (8)

where § is the coefficient of thermalexpansionand P,
the density of a reference state,

We introduce the following non-dimensional
quantities:

y* = y/L, u* = ull{(vP,),

P. = ;'f;: ji » w* = wLf(vP.),

HE = a—P..-g:va s He® = c—F.}l{;ﬂva ’

K* = KL, M2 = £ 'Zfifvr‘:"' ,
_BgNL! (9)

Elimtnating p from (1) and (8) and introducing the
non-dimensional quantities, after dropping the stars,
we have

d?u dH . u

Equation (6) shows that positive or negative values of
N correspond to heating or cooling along the channel
walls. Considering £, >0,
definition of G given by (9)that &% 0 accordingasthe
channel walls are heating or cooling in axial direction.
Further (3) reduces to, after dropping the stars,

d’w_  AH: __ w
v + M

11
e ¥ (11)
Equation (I 1) multiplied by i{( = + —1) when added
to (10) gives
diy cdh U

gt TM g g ey=—

it follows from the-

Current Science, August 5, 1982, Vol. 51, Neo. 15

where U=u+iw,h=H, +iH,. (13)

Similarly combining (4) and {5) and using (9), after
dropping the stars, we have

d2h 1 dU

& T T (+imy dy (14)
The no-slip conditions at the plates y = X | are
U(+1) =0 (15)

and since the plates are assumed electrically non-
conducting, the magnetic boundary conditions are

r(+ 1) =0 (16)
Solutions of (12} and (14) satisfying (15) and (16) are:
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where

2 1
= (i MKE =M+ e 19)

Separating into real and imaginary parts, Eqs. (17)
and (18) readily give the expressions of the x and z
components of velocity and induced magnetic field.

The dimensionless shear stress for the primary and
secondary flows at the upper and lower plates can be
obtained by using the values in

( cj; ) and ( c;w \
\ ¥ Jy=41 Yo Jy= %1

When buovancy forces areabsent{(G (), the shear
stress components due to the primary and secondary
flow do not vanish on either of the plates. Thus we
arrtve at the interesting conclusion that in the absence
of the buoyancy forces, the primary and cross-flows
do not show incipient flow reversal in case of a flow
through porous medium. On the other hand, the cross-
flow due to Hall currents shows incipient flow reversal
although the primary flow does not when ¢ (0 and
K = co(non-porous medium). The incipient reversed
flow for the primary and cross-flows at the upper and
lower plates takes place corresponding to that values
of & at which the dimensionless shear stress vanishes
at the plates.

M,*

HeAT TRANSFER

The equation of energy including viscous and
Ohmic dissipation 1s

oT 8° M du
U Yo ~ Ky ayz + P, [( dy )

2
(%)

where K, is the thermal diffusivity, ¢, is the specific

heat and the temperature 7 1s given by (7). Using (7)
and (9), the above equation can be put in
dimensionless form, after dropping the stars, as

B dU  dU

dh dh
2 e —— .- LSS See—
+ M QVJ, (21)
where P, is the Prandtl number -;%2— and
_ VP, _ d
Ks = o onls ' = (LPy) (22)

and the over bar denotes a complex conjugate, As for
the temperature boundary conditions we take the re-
ference temperature 7';in(7) in such a manner that the
temperature of the lowerwally= ~11is 7T, + Nxand
this implies that ¢ ( —1) =0. Hence using (22), the
boundary conditions for 8 {y) are:

(1)

xLp, - M (B

8§ (—1)=0,0() =

where N, 1s taken as the wall temperature parameter.
The temperature distribution 8(y) can be obtained by
solving the ordinary linear differential equation(21) of
second order with constant coefficients after substitut-
ing the expressions for U(y) and X y) from (17) and
(18) and making use of the boundary conditions (23).
We omit the details of calculation as they are quite
cumbersome.

PARTICULAR CASE

When K (permeability of a perous medium) - 0,
the problem reduces to that considered by Mazumder

et al.

RESULTS AND DISCUSSION

We have plotted 1{y), —w(y), HAy)and HA{y)for
different values of Hall parameter (m) and permeabil-
ity of the porous medium (X) with G =1 and M =5,

In figures 1 and 2, the profiles of the primary and
sccondary f{lows respectively have been plotted for
different values of K (=1, §, c©) and m(=1,2).
From figures 1t s clear that the pnimary velocity
increases with increase in K while secondary velocity
decreases numerically. It 1s also evident that an
increase in m increase the velocity of primmary and
secondary flows which is consistant with the findings
of Mazumder et al.
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FIG.1 PROFILES OF NON-DIMENSIONAL
PRIMARY VELOCITY uly} FOR

G=1 AND M=5
032

FI16.3 PROFILES OF THE NON-DIMENSIONAL
INDUCED MAGNETIC FIELD Hx FOR

0 28 A=
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FIG.2 PROFILES QF NON-DIMENSIONAL
SECONDARY VELQCITY wi{y} FOR
G=1 AND M= 5

(- —— = |
o200 | e=me- m =2

The effect of »zand K on the profiles for the induced
magnetic fields H ,and H,;have been shown n figures
3 and 4 respectively. In both the figures, the behaviour
of induced magnetic fields are not symmetrical about
the axis of the channel, The value of H ; decreases
numerically with the increase in K while H, increases
numerically near the lower and upper plates.

The values of shear stress at the upper and lower
plates for the primary and cross-flows are given in
table 1 in order to show the effect of m. The table
shows that the shear stress for the primary flow is
negative and positive at the upper and lower plates
respectively while a reverse result is observed for the
cross-flow. The value of shear stress at both the plates
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no possibility of the flow separation at both the plates

FIG.4 PROFILES OF NON-DIMENSIONAL
when G=1, K=1 and M =5.

INDUCED MAGNETIC FIELD Hg

FOR M:=5 AND G:1 TABLE 1|

Values of shear stress

( du) ( du) (dw) (dw)
" — —_— - —
dy dy Ci_V y=I dP |

y: —_— | =

L E—

1.0 —0.740408 1.094737 0.101272 —0.197663
2.0 —0.778453 1.197591 0.153687 —0.293120
3.0 -0.800944 1.275771 0.189259 -—0.338404
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ABSIRACH

The fungicide, hexachlorobenzene, acts as a nerve poison to Philosamia ricini larvae by inhibit-
ing acetylcholine esterase activity and producing toxicity. These lead to the lysis of all nutrients —
carbohydrates, glycogen, proteins and lipids as evinced by the enhanced proteolytic, lipolytic,
phosphorylase and aminotranferases activities throughout the development of P. ricini. 1t also
induce lack of appetite and renders the insects undernourished. Release of total free amino acids,
due to the high proteolytic activity could also account for the high mortality rate (47¢¢) of the
fungicide-fed insects due to amino acidaemia, Feeding of hexachlorobenzene to acetylcholine led
insects produced more or less the same overall etfect as with the fungicide alone.



