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ABSTRACT

While the anaology of logical OR and AND of standard sentential logic with Boolean
sum and product in BA-1, having only two elements 1 and 0, is well-known, the use of
BA-n, generated by n Boolean elements, does not seem to have been recognized. It is
shown here that BA-21s an excellent algebra, for representing isomorphically all connec-
tives of propositional calculus, vig 2-element Boolean vectors(T =(1 0), F=(0 1))and
2 x 2 Boolean matrices, not only for ‘forward’ connectives, but also for ‘reverse’ connec-
tives as defined here {or the first time. It is computer implementable and has two new
states ‘doubtiul’ D = (T ® F) =(1 1) and ‘impossible X = (T @ F) = (0 0). It has been
named Syad Nyaya (may be logic) System. Two new operators U (for unanimity) and ¥V
(for vidya = knowledge) also occur in SNS corresponding to Boolean sum and Boolean
product in BA-2. ¥ has the capability of extracting Tor F in the presence of D in one of the
terms, and showing “impossibility™ when the two sources combined by V form the
contradictory pair, T and F. BA-3 with three independent generators has 8(7 possible + |
impossible) states which 1s isomorphic to the extension of the states ¥, 3, and ‘P of
quantified logic. The third state of Brouwer’s Intuitionistic Logic (B) is very reasonable
since T, B, F can form the generators of a BA-3 algebra. 1t is pointed out that Ancient
Indian (Jaina) Philosophy had recognized the four states of SNS, or BA-2, in their
Syad-Vada (doctrine of doubt) and had even listed the seven possible states of BA-3 in
their Sapthabhangi (Theory of seven parts).

INTRODUCTION

N standard classical logic {CL, also known as

propositional calculus, or sentential logic), a
term or sentence can have only two truth values,
namely T and F. Also it 1s well-knownt  that
the logical interconnections between different
terms can always be represented 1n terms of only
three connectives ‘OR’ (v ), ‘AND’ (& ) and
‘NOT* (). The properties of the above-
mentioned logic can also be represented by
taking the simplest of Boolean algebras (BA-1)
having only two elements | and0 and putting the
elements in isomorphism with T and F
respectively. Then the three logical conncctives
become representable by the Boolcan operations
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of ‘sum’ ( @ ), ‘product’ { €@ ) and ‘complement’
("). Also, the well-known result 1n mathematics?
that all Boolean algebras are Boolean rings
{which proves the completeness of BA-I} also
establishes the completeness of CL, solongasthe
connective operators are apphed only n the
forward direction.

However, when the conncctives ‘AND’ and
‘OR” are applied in the ‘reverse’ direction (as
discussed in the next section), even if only the
states T and F are input, the output isnotalways
either T or | alone. We found that 2 more
powerful Booleanalgebri, namely one of genus 2
(BA-2), is required to describe such operations,
(The term ‘genus n' refers to a4 Boolean algebra
arising from nindependent generators®™.)  Two
new Jlogical states— “doubtiul’ (1)) and
‘impossible’ (X)}-—occur tn the system (see
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Section 3, and also two new connectives for
‘unanimity’( @ )and ‘vidya'( ® )arefound to be
absolutely necessary (see Section 4).

We have named the logical system which
employs T, F, D, X, as the basic states, as Syad
Nyaya System (Sydd =may be, and Nyaya
= logic,in Sanskrit). Since the introduction of
the doubtful state 1S the essentially new aspect in
this system, and since this truth state D is

describable as “may be either true or false,” the
name ‘Syad’ is justified for the system. This
article gives a brief outline of the nature and
properties of the SNS formulation, and shows
how CL forms only a part of this. This follows
from the result that the corresponding Boolean
algebras BA-1 and BA-2 are such thattheformer
is contained in the latter, forming only a
subalgebra of it.

To make the presentation fairly complete, we
consider very briefly, 1in Section 5, BA-3, which is
shown to be isomorphic with the states of first
order quantified predicate logic (QPL). Here
again, when this analogy 1s fully examined, it is
{ound that the {our logical states oy all’ { ),
‘there exists’( 3 ),‘fornone’( ¢ )and ‘notforall’
( A ) of QPL had to be supplemented by four
more states in order to lead to the complete set of

elements of BA-3.

‘REVERSE’OPERATORS AND NEW
LOGICAL STATES ‘DOUBTFUL® AND
'IMPOSSIBLE®

The working out of problems in CL s most
conveniently done (and implemented 1n a com-
puter) by making use of the 1Isomorphism T = 1,
F = 0 between CL and BA-1. When this 1s done,
truth tables of the type shown intable | result. In
this table, the first two rows indicate the notation
of the operators in classical logic!. To indi-
cate explicitly that a connective (e.g. “or™) is
operative only in CL, but not necessanlyin SNS,
we use capital letters (e.g. “OR™) and its opera-
tion is shown by row 3 of table 1. In this forward
direction, the output is always again T or F. A
connective operative in SNS is indicated by a
single heavy letter as in the last row of table 1.
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Examples of isomorphism between CL and BA-1

C
avb-=c¢ a&hzc 13—11 "avhbh=c
—
a®b=rc a@bzc a’=b l4:3*@1!?--.:’
l
BA-1jgb |1 0 14110 a | b ab |10
! ——
1 111 1110 1 | O 111 0
O |1 0 000 0| 1 0 tl 1
SNSlT a0b=c aAt;;c' aN =b a-l-b=cﬂ

| ) [

On the other hand, for a ‘reverse’ operator (as
defined in la and b), the output state could
sometimes be neither completely true, nor com-
pletely false. This is best illustrated by taking the
CL truth table for aOR b = ¢ in table 1A, and
defining the ‘reverse’ relation as follows:

Reverse ‘of’ ¢ v a=b {1a)
ts equivalent to

Given av b = ¢ and the states of

¢ and a, what is the state of b? (1b)

An 1nspection of table 1 A shows that if ¢ is true,
then it aisalsotrue, b may be either true or false;
and iIf ais false b is necessarily true. On the other
hand, if ¢ 1s false, and a is true, there is no
solution for b.—i.e. b can be neither true nor

false, which means that the question is self-

contradictory and the solution 1s ‘tmpossible’.
However, if cisfalse and aisfalse, b1s necessar-
1ly true. We have named the two new states
(‘either T or F’and ‘neither T nor F’) as *doubt-
ful’ (D) and ‘impossible’ (X), as in (2a, b):

TVF'-:-D
(" T)Y& (1 F)=X

It is interesting that, in Ancient India (in particu-
lar Jaina) Philosophy, the four states, consisting
of the states T and F, and the two extra ones D
and X explained above, are specifically defined.
We may quote the following from the section,
dealing with*Syad-Vada”(Doctrine of doubt) of

(2a)
(2b)
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Ref. 3 regarding the philosophy of truth and
icnowledge: “... thus adding, with characteristic
love for subtlety, two more alternatives “both ‘is’
and ‘s not’” and “neither” ‘s’ nor ‘is not’”, to the
well-known ones of ‘1s’ and ‘is not’™.

In conventional CL questions of the type given
in {1a and b), involving reverse connectives do
get asked and the results that come out are usu-
ally carried over—e.g. by taking both T and F to
be possible (corresponding to our D state) and
considering each possibility in turn while analys-
ing the results of further steps in the argument.
Obviously if more than one D state occurs during
this process, then several possibilities will have to
be worked out one by one. We have found that,
by having the D state and carrying on with that
state in all the later steps of the argument, it is
much simpier to solve such problems. However,
there is a need for an explicit representation of
these two new states for systematising the work-
ing out of the logic and also for converting the

steps into algorithms for a computer4s. One

method is to take the states D and X as given in
Eq. (2), and make their interpretation exact, by
having two electrical lines, each having two vol-
tage states I and 0. If these hines are called & and
8 then obviously T correspondsto a =1, 8 =0
and Fto a =0, 8 =1. Also, it follows from (2a)
and (2b) that for D, ® =1 and 8= 1, while for
X, @ =0and f =0. ThusthefourstatesT, F, D,
X can be beautifully implemented by electronic
circuits4:6,

Thus, if we represent, in general, the logical

state of a term a by the electrical states(x 8 ) of

the two lines, then, the four states are represent-
able by Eq. (4) in the next Section 3. Wecame to
this representation only by such an intuitive
approach. 1t was long afterwards that the 1den-
tity of the algebra of this with BA-2 was dis-
covered and established.

NECESSITY OF BOOLEAN ALGEBRA OF
GENUS 2 FOR SNS

It is clear that while the one-¢lement Boolean
algebra is satisfactory for CL, the answers 10
questians, involving reverse operators, asin 2{a)

—— — Sl " wih

and (b), are not representable in that system.
Therefore, we have to consider the next simplest
of Boolean algebras, namely BA-2. Since by its
very name it has two generators, it is cbvious that
all terms in this logic can be represented by two
Boolean elements « and 8. Thus, in BA-2 the
state of a term, in general, can be represented by
a two-element Boolean vector

g = (aa aﬁ) (3)
The four possible states that this can assume are,
T=(10),F=(01),D=(11),X=(00). (4)

It 15 obvious that, this representation of BA-2,
satisfies equations 2(a) and 2(b) via S(a) and X(b),
and that it also satisfies the condition that the
states T and F are mutually exclusive by being
the complements of one another,—as in (3c}and
(5d).

TeF=D{@), TeF =X (b),
T = F{(c), F' = T (d). (3)

It is also seen that the right hand sides of all the
four equations in (3) are again contained within
the set of four vectors in (4). This means at once
that the set of four vectors in (4) are closed under
any number of ‘forward’ applications of the
operations @ , @, .

We have already seen that SNS requires four
states T, F, D, X satisfying the equations 1n (4)
and (5). We shall therefore examine its properties
more in detail, and show that the mathematical
formalism of BA-2 contains all that 1s necessary
for implementing the logical terms, connectives
and cquations of SNS (i.e. CL extended to take
care of D and X, in addition to T and F).

We shall also show that the Boolean vector
representation of the possible states of a term 1n
SNS is perfectly compatible with CL also, What
is more interesting is the fact that, not only are
the CL operators ltke AND, OR, NOT represen-
table by 2 X 2 Boolean matrices in BA-2, but that
we can also implement, via BA-2, in o very natu-
ral manner the reverse operators mentioned ear-
lier [see tables 2 and 3). We shall now discuss this
vector-matnXx formatism of BA-2-—first, exclu-
sively for CL, in Section 3, and then, generally
for SNS, in Section 4. Lastly, tn Section 5, we
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shall consider briefly the relevance of BA-3 for
quantifier logic.

VECTOR-MATRIX FORMULATION OF
BA-2 AND ITS USE FOR CL

Since all vectors in BA-2 have two elements, a
Boolean matrix | Z| connecting them will be
2 x 2, with 4 elements {corresponding t0 Zyq.
Zag. ZBx. Z8R). each of which can have only
the values ! and 0. Hence, there are only
24( = 16) different matrices in BA-2 and these
are listed in table 2. This table 1s in two parts.
Part A contains ten matrices, which correspond

-

to known connectives of CL. The identification
of the matrix corresponding to the connective 1s
made by calculating the truth table of the con-
nective in CL (last column of table 2) and obtain-
ing the matrix by putting T =1, F = 0 for the
four entries of the truth table. We shall not com-
ment on Part B of table 2, since these operators
do not occur as such in sentential logic, and they
are expressible as combinations of two or more
matrix operators hsted in Part A—e.g.
IR| =|Ale|17,|D] =]0le|/],|D] =|Ale®
¢

Coming back to Part A, the ways in which
these matrices can be used to implement the

TABLE 2

The 16 Boolean matrices of BA-2 and the corresponding SNS operators

— — —

SLNo L
} Mattix Name

Syad nyaya system

—

p— p———— S

Classical logic

—— _ —— eyl Pl A

Symbol Truth table

Al A P . — P ————

. Known in classical logic

A

I ((I} ?) Equivalent
0 | Negation,

2 exclusive or
1 0

3 (0 0) And

4 (? }) Nand

5 0 1) Not imply
0 ¢

6 (; ?) Imply

0 0 .
7 (1 0} Not tmplicate
g L Implicate

0 | P

Nor

0)
]
I ]
10 (1 D) Or

T
— =

E°(N) e

)
Tt

>
®e
™
T

Ac |

J(I™) -
J(IY -

OF° ¥

ke Be B B R IR R R B I
T =T =SS mTm HGm o =
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Table 2 (Continued?
Syad nyaya system Classical logic
S1. No. — A R
Matrnix Name Symbol |  Symbol  Truth table
B. Remaining six possible matrices
1 1) . T T
1] 0 0 Row true R(R1) -
0 0 c
12 (1 | Row false® R (R3:,RY) ? IT:
13 (} g) Column true? C(C'") 1.1: E
14 g }) Column false? C(C:CYH Il:: :]r~
11 NDoubter? T T
15 I 1) (Unrelater 2) D T T
0 O Contradicter® ¢ F F
16 . D*(X
(0 0) (Nulllﬁer“) \ ) F E

i,

I il P —

P el — —

“These names have been newly coined, and these matrices are included for complete-
ness. All of them can be obtained from two suitable matrices in Part A, viaa Boolean

sum or product (see text).

operation of logical connectives (unary and
binary) are given in a summarized form in table
3. Thistable has been prepared with SNS in view,
but it is interesting that the matrix calculus is
equally valid for CL, provided it is remembered
that the inputs can only be T or Fin CL and that
the outputs are also to be expressed interms of T
and F. AN matrix products employ Boolean
sums and products (as in table 1A and 1B). The
Boolean Dirac bracket product <alK{b> is
defined as follows:

each element of the vector, or matrix, assumes its
Boolean complement value in BA-1. We also use
the superscript t to indicate the transpose of a
matrix |Z|. Thus;

(7d)
(7€)

A = ()
I\t =Zp\i\p=o.B

a) Binary connectives

It can be shown that the BA-2 formula con-
tained in table 3H, in terms of Boolean Dirac

Let bracket products, is the representation in BA-2
{al = (a, aﬁ)’ <b| = (by bﬁ) (7a)  of the corresponding binary connective opera-
q tion in CL of table 3G. The proofis simple if we

an note that both <a| and <&| in the Dirac

| K| = (KM‘)’ A=a,8: p=6,8 (7b)  bracketcan only have the purce states I and I, 1n

Th CL.. Then, only one term of (7¢) survives, and the
o corresponding Ky pis 1 or U, accordingly as the
<a|K|b)> = k(a scalar) = logical truth table has T or I n the location
p p> ‘ (K:F)

A =M = KNJaAbﬂ (7¢)
B oap It 1s again easy to show that, in ClL., the sccond

We also need the complement of a vector <al or
matrix| K|,denoted by <a®|and| K®|,in which

cquation  <al 246> = ¢g. in table 3H, is
redundant, and follows from the first, namely
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TABLE 3
Analogy between SNS and BA-2

l L SNS (also for CL) B

— — ' P — — p—

BA-2°
B Vectors

A. Terms
| ha .b.etc., having T, F, D, X (aq. ap), with ay, ag =0, I
H C. Connectives D. Matirices (2 x 2 Boolean) like |
Examples are N = negation, 0 1 1 0
| A = and. All others are |N| = . (Al =
% derivable from N and A 1 O 0 0 l
m — — — A S — ——
‘E # E Unar}r relation £, Matrix produi‘r !
j | e.g. 1 a= b corresponds to e.g. <al Nl = <b], which yields
O aN=b a = bp,dn =b
= | ] a” "B
r
3 G. Binary (forward) relation H. Dirac bracket product J
S e.e. a&b =c¢ In peneral {a|Z[b > = c,
s | azb-=c $alZ°|b> = a(Zyp = Zyp) l
S wl AU
| 1. Binary (reverse) relation J. via Unary relations
1 e.g. ¢ Za=b stands for IfC =T, alZ] = <b]
aZ b=C isgiven, and the IfC =F, (alZ| = <b|
| | states of C and 4 are known. IfC =D,X;b =D, X
To {ind state ofb
N R - i —
| £ K. SNS binary relation?® L. Boolean algebra operation
e Unanimity operator U Uiayoba = cpiag@bg = ¢
= giVﬂ'San."_’C ﬁ ﬁ‘ B
2 Vidya (knowledge) operator V Viap,® by = cxsap @bg = ¢
é gives & V b =c A B R

“All additions and multiplications follow BA-1, as in Table |.
"In addition, there is a purely SNS unary operator M, which stands for complementation of the vector. Thus

for M az=bh, we obtain 3, = bB‘ ag= ba.

a|Z|b> = cq. Thus if one of ¢,, cg is 0,
which is always so for the pure states T and F of
CL, only one combination, say Zy u, 1s refevant,
and caccordmgly, if as Z}uub‘u = 1(0) then

However, in SNS, the values of ¢4 and cg are
independent, and the full capabilities of the for-
mulae in table 3 are required for implementing
SNS via BA-2. Here again, the proof folijows
from the equation

Lar|Z)b> @ KaglZ|b> =
ar o aelZ|b>= <aplZ|b> (7)

and similarly when bp occurs, and hence also
when ap and bp both occur,

b) Unary operators

There is one operator In CL, namely
NOT ( 1), which has the property that, for any
a, " a = a. If we take the matrix corres-
ponding to this fromtable 2, and apply it twice, 1t
follows that

Ca| N|N| = .<Ka|E| = < a (8)

This is the proof for the first tautological equiva-
lence given in the set of these on p. 34 of Ref.[1].
In this case, the binary relation a N b = ¢
corresponds to the logical connective XOR. In
the same way, the other 8 binary connectives in
table 2A can also have a unary counterpart, but
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these are best constdered after the reverse con-
nectives are discussed in Section 4.

c) Verification of standard tautologies

We shall first consider the tautological equiva-
lences (listed on p. 34 of Ref.[1]). Allof them are
readily vernified using tables2 and 3. However, we
shall take a few of these, and illustrate how
beautifully these are fitted by the vector-matrix
formalism. In the equations below, the L.h.s. are
the tautologies as listed 1n Suppes’ book, and on
the r.h.s. are the corresponding matrix equations
from our formalism.

(P=>Q)e(nQ = Py | 1] =|N|JIN| (92)

De Morgan's Laws

A(P & Q)<-PvaQ 4= |[N|O|N| (©b)
A(P v Q) = P& Q| 0%=| N 4| M (90

Commutative Laws

P&Q = Q&P lA]l=14"] (9d)

Implication expressed as disjunction
P=Q<=2PVa {=|No0f (%)

We shall give one example of a tautological
implication. It 1s

(P=Q) & (Q= R)~ (P =R) (10a)

Anticipating the discusston in Section 4 about
unary operations, we write the vector matrix
equations of Lh.s. of (10a) as

<Pl1] = <Q|; <0l = <R} (10b)
so that

<Pl = <R| = <P|It,

since {717 = | 1 (10¢)

which 15 the r.h.s. of (10a).

VECTOR-MATRIX FORMULATION OF
SNS, INCLUDING REVERSE
OPERATORS AND NEW SNS
CONNECTIVES VIDYA AND

UNANIMITY

We have seen in the last section that the Dirac

e — P i anilel

product formula in table 3H is valid for all
inputs, including the state D(1 1) for a and b
We shall now examine the nature of ‘reverse
connectives,

}

a) Reverse operaiors

1f on]y the classical states T, or F, form the
inputs in a relation of the type Z a = b, then,
the equations given in table 3J, can be used to
determine b. We shall illustrate its use with CL
inputs for € and a, to obtain the state of b, for
c 0 @ =b by considering the four possible com-
binations of (€, 23 ), namely (T, T), (T, F), (F, 1}
and (F, F), in Egs. (I11) and (12) below.

If ¢ =T; <alO] = <b| (11a)

_ ) to1\_ )
Fora =T, b = (! 0){' 0}.(1 1) =D (l1b)

and

fora =F, b =(0 1)(} 5): (1 0)=T (llc)
Ifc =F, <{a|lO‘ = <b] (12a)

Fora =T, = (1 0){, ?]:(o 0) =X (12b)

and

g 0
for a = F, b = (0 ])(0 l)= (0 I)= F (IQC)

1t 1s very interesting that, even for such a sim-
ple connective as OR, the etfect of reversing
aQb =c asc 0a=b canleadtoallfourstates
T, F, D, X as outputs forb,euen though only CL
states are fed in. Thus CL gets extended to SNS
when. ‘reverse’ operators are introduced.
Interestingly, introducing the SNS states also as
inputs for ¢ or a does not lead to any further
extension in the number of states. Thus, ¢ =D
makes b = D in the reverse connectives cqua-
tion, whether a is T, F or D. Fora = D, the
formulac

CalZl = <b]

{a|£f] = <b] (13b)

accordingly as € = Tor F, s equally vahd for the
SNS input of <a| =

(13a)
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We have examined the utihty of the equations
tor forward and reverse connectives in SNS ina
variety of problems and have even written a
FORTRAN program® ,named MATLOG for
this purpose. We have also worked out algo-
rithms whereby a collection of statements at ran-
dom can be rearranged to be in a sequential
manner, such that the logical inputs for any
statement are available as outputs of previous
steps, or as original inputs of the problem. A
discussion of these is reserved for a separate
communication.

b)Y The doubtful siate

We shall now consider the physical nature of
the states D and X, in some detail. Thus, the
doubtful state ID stands forone in which the term
“may be true”, or “may be false”. If we think of
the states T and F as the ‘pure’ states, which are
mutually exclusive, then D becomes a ‘mixed’
state (very much like a mixed state in quantum
mechanics) composed of a mixture of the pure
states (1 0) and (0 1). Consequently, if we ask
the question, “Can the entity be true?” when it (s
in the D state, the answer would be ‘yes’. If we
then ask the question “Can 1t be false?™, the
answer again would be ‘yes’. In effect, our pre-
sent knowiedge of the state is indefiniie and it is
this indefiniteness of knowledge that 1s embodied
in the symbolic representation of D as (1 1).

The physical description of the ‘impossible’
state X 1s given 1n the next Section 4(d).

c) The new connective for ‘unanimity’ U

We shall discuss below the process of “purifi-
cation” of the doubtful state, which involves an
understanding of the logic of the two new opera-
tors U and V, as well as the nature of the state X.
The definitions of the purely SNS connectives U
and V are contained in table 3K and L. Itis clear
from these that they are describable in terms of
the Boolean additions and multiplications of
state vectors, which is quite different from the
application of the matrix operators for CL con-
nectives. However, they are not really so differ-
ent as all that. This will be clear from the
representation of the effects, on the individual o

Current Science, July 3, 1982, Vol. 51, No. 13

and B lines of SNS vectors, of the four connec-
tives O, A, Uand V given below in (14} and (15).
In the former two (O and A), the CL equations
on the left of (14) {or the a -components are
duplicated on the right for 8-components by the
de Morgan relations.

(14a)
(14b)

On the other hand, Egns (15a and b) also use
AND and OR for individual lines g and 8, but
the CL operator is the same for both the a and §
components, following the Boolean sum and
product in BA-2, as in table 3J. The 8-line is not
derivable from the «-line, and the operator (U or
V) acts on an SNS state (a8 ).

O: agqOR ba = aﬁAND bgp=cg
A: agAND by= cy; ag OR bp = g

(15a)
(15h)

U: a4 OR bg=¢; aﬁOR bﬁ-‘:fﬁ
V: agAND b 4 =c; aBAND bﬁ =g

We have implemented in an analog computer,
using I1C chips for AND and OR, the effects on
the @ and 8 -lines of O and A, and all other
matnx connectives. The same technique has
been employed for U and ¥V also. Since it
employs two lines &« and 8, and uses the Syad
state D, it 1s named ESNY (Electronic Syad
Nyaya Yantra ( = machine))’.

TABLE 4

SNS truth tables for Uand V
A.alUb

8. ayV b

?These follow from the algebra o1t BA-2; but their
utility for logic has to be considered further.

Using (15a and b), it 1s a simple matter to work
out 4 x 4 truth tables for the four SNS states,
and this 1s given 1n table 4 for U and V. Con-
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sidering the truth table 4A for U, it is seen that a
pure state (T or F) combined with itself by the
unanimity operator gives again the same state,
just asfor Oand A. Onthe otherhand TUF = D,
FEUT = D and all other combinations give D as
output for al/b. (X is an impermissible input for
a or b, and hence the fourth row and column
need not be considered. {What is given in table
4A are consequences of BA-2.)) Thus, U has the
very simple property that, if @ and b have the
same (permissible) state, the ¢ has also the same
state: otherwige € =D, The same will be true of
a ya,f/ .. . Uan=°C, for which ¢ 15 T (or F)
only if a/f @; are T {or F); otherwise it has no
information valug. Hence the name ‘unanimity’
for this operator.

dy Vidya operator and the impossible state X

Censidering @ V bin table 4B, we find the
beautiful result that it one of @or bis T, but the
other is F, then @ ¥'b =X, showing that the
result (C = 8 ' b) s *impossible” or ‘contradic-
tory”. It means that one of the inputs @, or D, is
invalid or wrong. Therefore, one aspect of Visto
check for consistency between @ and b, and to
detect contradiction.

On the other hand, if we take a (¥ bp, then
we get the D state purified to T, or F, as the case
may be. This is, in fact, an extremely useful
process, for this is the way in which knowledge
(Vidya) 1s acquired about anything. Initially, the state
(of knowledge) is one of absence of definite
information,—Syad {may be true or false)—or
all) When, however, definite information (asto
T or F) 1s obtained, a T(F)? then the data {fromthe
two sources can be put together and combined by
V as a, Va2 | This gives for a the resultant

RO R .
state a'}p, i.e. definitely true, or definitely false

and justifies the name Vidya for this operator. A little
reflection will show that none of the ten CL
connectives given in table 2 is suitable for this pur-
pose, and only V¥ has all the required properties.
More generally, the appearance of a contra-
diction (X) at any stage indicates that one of the
previous steps is wrong{or inconsistent), and this
can be used to trace the argument back and
pinpoint exactly where the original cause of the
contradiction is located. A general algorithm,

sl

using SNS formalism, is being worked out for
this purpose, and will be reported elsewhere.

The possible uses of the matrices 11 to 16 in
table 2B will not bz discussed here, although
matrices 15 and 16 occur quite often.

e) Logical analysis of a problem using SNS

We take a simple problem in which a person
has to be judged guilty, or not guilty, of a crime,
from the evidence given by two witnesses, one
(w,). who gives eve-witness evidence, and the
other (W) giving @libifor the accused. The logi-
cal steps are summarised in table 5. We shall
comment on the equations in Parts B and C.
Considering the evidential value ®, and €, ,if the
first eye-witness says he saw the crime, then €, 1s
T: but if he did not witness the crime (W, =) no
evidential value comes from him. Hence, the
relation between W, and &, is the CL connective
“Implies™ (=). Thus, W e is true and Wi is
given, so that <w, Il = <e,|. In the same
way, possible @/ibi gives e, as F, while absence of
alibi has no evidentiary value (€2 = D). Hence.
we again have an implication W, L, but it gnves
T €, Hence we have the relation,

{er| = wi|l|N]|.

Part C of table 4 uses the Vidya operator ¥ tor
combining the information provided by two dif-
ferent sources. The initial state 1s clearly D, since
there is no evidence either for or against the guilt,
to start with. When the evidence e, 1s obtatned,
the intermediate state of the guilt (92) 15
obtained by combining the initial state 9, with
the first evidence ey via V to give 9:. In the same
way, we combine 9, with ez, the second evi-
dence, via V, to give the final conclusion 9. The
truth values given in section C of table 5 arise
from the four possible combinations of (W,
wWa)—namely (T, T), (T, F), (F,T), (F.F). It 1s
interesting that all four possible states T, F, D, X
occur for the state of the final concluston {rom
the four different input combinations,

[t will be seen from this example, that the SNS
type of analysis of a logical problem is nat only
very informative, but isalsoinsucha formthat it
can be implemented by a computer program. In
lact, all operations involve only Boolean addi-
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TABLE 5
Pracnical example requiring the new sraies D and X and the Vidya operator
Case I 2 3 4 Remarks
il ] o A. Siate of existence of the iwo evidences
Of eye-witness W T T F F T = saw crime
Ot glibi W - T F T F = ahbi available
B. Evidential value for proving guilt

€. fromw,=> € T T D D The implications are obvious

E:fromW,=>1 2, F D F D (see text)

{~ee text)

C. Steps for deciding whether guilty or not

Initial state 4, D D D D No evidence for or against
gutlt 1s available

First stepQ ¥ €,= 9, T T D D G, 1s the state of 9 when
only €, 1s considered

Second step 9,V €, =9 X T F D Here, the second evidence €,1s
also taken into account

,, . : Contra- Found Not Inde-
Nature of final conclusion dictory ® quilty guilty finite® All four states can occur

- iy S— e

— T E—— T

“Obviously one of the two witnesses is giving false evidence.
*The available evidence is inconclusive, and new information is called for.

tions, multiplications and complementations,
and equating the components of a pair of Boo-
lean vectors.

EXTENSION TO BA-n AND
MULTIVALUED LOGIC

a)y QPL and its extension SBL isomorphic to
BA-3

When the matrix calculus of SNS logic
became quite clear, we attempted to extend this
to Quantified Predicate Logi¢ (QPL). As is well
known, the quantifiers commonly employed in
QPL are four in number—namely,

Forall v Thereexists = 3 ,Fornone = ®
Not tor all = A

¥

(16)

It 1s also known that these are interconnected vig
operations involving negations of the quantifier
states as well as negations of the state of the term

which 1s quantified. Thus,

NN EAN =D ava =3 (17)

We tried to represent these in some vector-
matrix form so that they could be manipulated
with, in the same mannerasin SNS via BA-2. We
found at a very early stage that this required
three electrical lines (Y, 8, €), each of which can
have the two Boolean states I and 0. We then
examined the nature of 7Y, 8, €, when we found
that Ycorrespondsto V" {forall),and < to ¢ (for
none). However, the third line & did not corres-
pond to either one of the other two quantified
states 3 and A . Very soon we found that §
corresponds to a new state, which we have
named ‘for some’{3,), whose properties are best
represented by the equation

J& =X

Physically, ‘some’ is seen 1o be the state which
covers the whole range of existence excepting the
extremes of complete absence and complete
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TABLE 6

Complete ser of states in SBL isomorphic 10 BA-3

il

— .

BA-3

Description as per SBI
N a / S A
A Symbol Saptabhangi description description
For all, M asti (is) Puge (1 0 0)
For none, b nasti (is not) Pure (0 0 1)
For some, = avaktavyah (inexpressible) Pure (0 1 0)
There exists, = asti ca avaktavyah (I 1 Q)
(is and inexpressible) © R
All or none, 6 ast1 nasti (is and s not)* W o Y (1 01)
Not for all, nasti ca avaktavyah {is not
and inexpressible)© b o = © 1 1h
Universal doubt, /\  astica nasti ca avaktavyah v & ¢ (r 1l
(is, is not and inexpressible)* o =
B ' M@ = o
Impossible (in SBL) * No term 1s available for this =2 ® @ (0 0 0)
_ SM Q5 -

" "The last four symbols have been coined by us.

®This is copied from Ref. 5. The word Syad(may be) is omitted.
“The ‘and’ in these descriptions is to be taken to mean “may be this and that™.

presence. ‘There exists’( 3) has already the prop-
erty that it omits ‘none” but includes all other
types of existence, including ‘all’. So the best way
to understand this state ‘some’ 1s to say that it
cotresponds to ‘there exists, but not for all’.

The Boolean algebraic nature of the complete
set of 8 states generated by presence or absence of
the voltage in three electrical lines v, §, ¢,
(which are mutually exclusive), thus becomes
clear. The three are i1somorphous to the three
generators of the BA-3 representing an extension
of QPL. Then any combination of these via the
Boolean operators @ and ® shouldalsoleadto
a’ state within the complete Boolean algebra.
When this was written down, it was clear that
both ‘there exists’ and ‘not for all’ are superposi-
tions of two states (see table 6). In addition to
these, three more new states became defined,
namely 6 ,A, * as shown intable 6, We¢ have
thus extended the limited Boolean algebra
of the four quantifter statesin standard QPL
to form an 8-element Boolean algebra BA-3,
which is closed under Boolean addition and
multiplication.

Just as in the case of Syad (D) in SNS, the
Jaina philosophers of ancient India had recog-
nized the seven possible states of BA-3 (omitting
the eighth impossible state)—see Ref. 3, p. 164.
The names given by them for the seven states are
also given in table 6 and they form what they
called the Saptrabhangi (7-fold state of truth).
Therefore, we have given the name SBL Saptab-
hangi logic) for the extended form of QPL made
so as to form a closed complete algebra BA-3.
We shall not discuss anything furtherabout QPL
and SBL, since the detailed implementation of
problems using this logic has yet to be worked
out.

Lastly, we shall comment on the third state,
besides T and F, that 1s contained in Brouwer’s
“Intuitionistic Logic™ (1L). This state, which we
may denote by B {the {irst letter in the name of its
originator), appears to have some properties in
common with our D state, atfirst sight. But there
1s a great difference, since D can be punficd to T
or b, while B cannot be modified in this way,
because, in 11., a proposition, in the B state, can
never be proved to be either T or F. Brouwer’s
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third state (B} is, in fact, very similar to the third
state () in SBL. and even the SBL. description
‘avahtavyah’ for this state 1s stmilar to the IL
cancept of “can never be proved to be etther true
or false™.

Thus, the CL states T and F, together with B,
has the same algebraic structure as SBL, or BA-
3. We cantherefore say that our Boolean vector-
matrix formalism, in terms of analogies with
BA-1, BA-2 and BA-3, explains in a very simple
manner the nature of the interconnections
between terms, connectives, etc., which occurin
most of the logic that 1s used now-a-days.

In fact, the Boolean vector-matnx formula-
tion seems to be a very suitable one for imple-
menting multi-valued logic by the Boolean
algebras BA-n, but this 1s beyond the scope of
this article.
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ANNOUNCEMENT

JOURNAL OF MINES, METALS AND FUELS—SPECIAL NUMBER ON THICK SEAM MINING

The Journal intends to provide a technology assessment on thick seam coal mining in the above referred
Special Number which provides a detailed country-wise assessment of the problems and prospects of thick seam
mining, and also a global overview, carrying contributions, itlustrated with photos and diagrams of equipment,
from the leading mining engineers in India and abroad. The issue serves as the window to the world of thick seam
mining, an area of technology which has been much neglected hitherto.

The special number, running into 130 pages has been priced at Rs. 35.00; £ 10.00 or $20.00 plus postage and
registration charges of Rs. 3.00; £0.30 or $0.70 (sea mail). It 1s hoped that in terms of its rich contents the Special
Number would veritably serve as an advanced text on the subject.

The special number of the Journal s pubhshed by M/s. Books & Journals (P) Ltd.. 6/2 Madan Street,

Calcutia 700 072.




