INFLORESCENCE ANATOMY OF CYPERUS COMPRESSUS

O. P. SHARMA AND R. SHUAM
School of Plant Morphology
Meerut College, Meerut 250 001, India

Looking at the literature on the anatomy of Cyperaceae, it becomes clear that the inflorescence anatomy of Cyperus compressus has not been worked out so far. To fill this gap, this investigation has been undertaken.

The culm in C. compressus terminates in an inflorescence. The inflorescence comprises of spikelets arranged in somewhat umbellate manner. At the base of each group of spikelets is present a large leafy bract which resembles the foliage leaf in appearance. A mature leafy bract ranges from 5–12 cm in length. Each spikelet is extraordinarily laterally compressed, and reaches up to 2.5 cm in length. The glumes (8–30) remain arranged in two ranks on the spikelet axis. Lower 1–2 glumes remain sterile while in the axil of all the rest is present a flower. Each flower contains three stamens and a gyropodium which is tricarpellary, syncarpous and superior. The style divides into three stigmatic lobes.

The triangular culm has a thickly cuticularized epidermis. Sclerenchymatous patches occur close to the epidermis. Numerous vascular bundles of different sizes occur throughout, intermingled with tannin filled cells (Fig. 1). A little higher up vascular bundles fuse (Fig. 2) and form three groups (Fig. 3), of which two coalesce (Fig. 4). The third group, separated on one side, supplies the first peduncle of spikelet (Figs. 5 and 6). Simultaneously, the peripheral part of the culm separates to form the first leafy-bract which is supplied by peripheral bundles of the culm (Figs. 4 and 5). Few vascular bundles of the peduncle are separated towards the periphery, only a little higher up, and supply the sheath present around the peduncle. This sheath represents the prophyll (Fig. 6). The peduncle now is the axis of the spikelet. A little higher up, there separates a glume, in the axil of which develops a flower (Fig. 7). Next glume and flower are formed in opposite position only a little higher up (Figs. 8–10). This sequence continues to be repeated. The spikelet axis ends in an apex having only few procambial strands (Fig. 11).

At the stage when the formation of 2nd flower in the 1st spikelet is completed (Fig. 8), the peduncle of the second spikelet is differentiated in the inflorescence axis, evidenced by separation of a group of about 6–9 vascular bundles from the two fused groups. The second peduncle and the second leafy bract follow the same pattern of separation as in case of the first.

The authors are thankful to Kerala Agricultural University for providing facilities for conducting the experiment which formed part of the M.Sc. (Ag.) Thesis submitted by the first author.

June 6, 1981.

peduncle and first leafy-bract. The second peduncle is also enclosed by a tubular prophyll (Fig. 9) and cuts flowers in the same way (Figs. 10-13).

The peduncle and the leafy-bract of the third spikelet are formed on the third remaining side of the inflorescence axis (Fig. 10) in the same fashion described earlier. However, after the separation of third peduncle, some vascular tissue is left in the inflorescence axis. The peduncle and respective leafy-bract of the fourth spikelet are separated from the inflorescence axis just beneath the origin of the first spikelet (Fig. 12). The third and fourth spikelets also cut flowers in the same way as described for first spikelet (Figs. 12-13). The spikelets are formed in an anticlockwise direction on the inflorescence axis.

After the formation of four or sometimes more spikelets, the inflorescence axis does not cut more peduncles but itself behaves as a peduncle. It cuts a few sterile glumes at the base (Fig. 13) followed by fertile glumes, each bearing a flower in its axil (Fig. 14) in the usual manner. It terminates at the apex having a few procambial strands.

The authors express their grateful thanks to Dr. A. M. Bendre, for some valuable suggestions. One of us (O.P.S) gratefully acknowledges the financial support from U.G.C. (Code No. 6377).

June 16, 1981.


A NEW FRUIT ROT DISEASE OF ANONA SQUAMOSA L. FROM INDIA

A. L. SIDDARAMAIAH, SRIKANT KULKARNI,
H. S. HARALAPPA* AND R. K. HEGDE
Department of Plant Pathology
College of Agriculture
Dharwad 580 005, India

Annona squamosa L. is commonly called annona in India; in other countries, it is called sweet sap or sugar apple. A severe fruit rot disease of A. squamosa was observed during 1979-80 (August-November) in the Horticultural Garden of Agricultural College and also in the Karnatak University Campus, Dharwad, Karnataka. The disease was marked by water-soaked area followed by brown spotting and softening of the fruit tissues which in an advanced stage, turns the fruit brown. The incidence was quite high ranging from 20 to 90%. 

*Department of Horticulture