| The electron density is a very attractive starting point for
the construction of models to understand the behaviour of atoms,
molecules and solids. It is therefore desirable 1o have a religble
method for the direct calculation of electron density in such systems,
bypassing the many-electron wave function and the Schrodinger
equation. In this article Dr. Deb reviews briefly some recent
attempts in this direction and indicates how far we are from this

goal.—Ed. )
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VER the last decade and a half, the funda-
mental impor tance of electron density in
predictive and interpretive theories of chemis-
try has come to be well recognized=3. B.iefly,
as compared with the weve function approach,
electron density 15 a more altractive starting
point for the construction of models to under~
stand the behaviovr of atoms, molecules and
solids since these phenomena can then be
visualized in the three-dimensional (3D) space
enabling us to discourse in a largely classical
language. In a number of instances, this
yields new and deeper physical insights. which
are not readily extractable from the wave
function¥, Further, according tc the Hohen-
berg- Kohn theorem?, the electron dénsity is
a basic quantum-mechanical vaijable and, 1n
the ground state, contains «/f information
about the many-electron system. It has thus
been tempting to think of an alteinative formu-
lation of the quantum mecharics of atoms,
molecules and solids solely in terms of the
clectron density.

Clearly, the principal objective m such an
alternative formulation is an exaer method
for the direct cvaluation of clectron densitys
bypassing the wave function and the Schri-
dinger equation * It s the purpose o! thy
article to discuss the efforts in this direction
by 4 number of workers in diflerent countoies,

¥ Note (bt in such elforts the Schrodinger cquation
or s varnant 15 hkely to Provide bathground suppott,
What is implied here 1s that the wave fundtion or the
Schrodinger equation should pot be enployed diecrly.

Although these eflorts do not yet provide a
satisfactory solution, they do provide some
glimmerings of hope.

In view of the recent upsurge of interest in

electron density studies, it is worthWhile to
note that the density appcoach is almost as

old as the wave function approach. Besides
having paved the way to modern density-
functional methods?, the Thomas-Fermi (TF)
and Thomas-Fermi- Dicac (TFD) models with
theic vacious modifications®™® continue to
interest and inspite many physicists aad
chemists. In fact, the TFD terms (see later)
still play an important vole in present-day
attempts to calculate the density without
going through the wave function.

Ideally, what we are lookirg for is a diffe-
rential (or an integre-differential) equation in
terms of the elxciron density. In an earlicer
attempt, Yuan and Light” had obtained the
following Milne equation for atoms through a
Langse transformation, r = ¢*, for the radis]
vaTiablel

W {X)

+ [DE 4 2Ze* — (] + 1)
w{x} -

— wi(x) =0, (1)
where Z 18 the nuclear charge and [ 1y the
azimuthal quantum  number;  the funclion
wix) s refated to the radial wave function
Ra () ond, therefore, to the radial density
drrdp (r) in 4 roundabout mannar?. Thus, 1
ocder to obtain the radial density for, e.g.
cloved-shell atams, one munt list selve the
above noylinedr second-order differential equa-
tion. Yor the Kr atom, the authors cloimed
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quite good results for the energy and density,
including the shell stiucture (missing in the
TE radial density*) aver the range 0< r< oo,
except & small region near the nucleus,

While Eq. (1) dces not directly involve the
density, Lawes and March® have obtained
approximate differential equaticns for atoms
and molecules whose solutions would yield
the coiresponding densities. For closed-shell
atoms, the ceatral-field problem may be treated
as a 1D case. The density equation for
closed-shell atoms then turns out to be a
third-order differential cquation:

L, 8V

X 'Lno; + ;},(f"‘"’m)] , (3)
p(r) = § QU+ (), (4)

where the one-body external potentiel V
contains the effects of exchange and cosic-
lation subtly through p. The third-order term
is expected to be rather significant for light
atoms but its importance is likely to diminish
with much heavier atoms,

For the nwoleeular situation the equation
p'oposed by Lawes and March® is probably
the first of its Kind. For 1D motion they
obtain a nonlinedr third-order equation which
does not involve p (r) directly:

UIIJ"

-(V"—-U)+ﬂ[:(U V)U + o

1ol g4

+ & U = (5)

whete B = UkT and U(xf8) is an effective
potential related to the generalized partition

Pl

* Recall that, accordipg to the TF model’, electron
density is given by

8
p(F) = _;;,f-f Qe 2 [~ VAT, )

where p is the chemical potential and V() is the
one-body external potensial,

——

function Z(xf). The lineer approximation of
Eq. (5) js

l yo_ ’ ﬁ rre dUr
sV = W)+ 5 U "/f"{}‘f‘g'““@
o | (6)
Generalizing Eq. (6) tc 3D space gives
1 TR . dUl _
VU~ (U= 1) = 5 =0,
(7)

so that one has finslly airived af a second-
order f(inear equation for a molecule. The
solution of Eq. {7) is

Ui (rf) = [ g(re’ B) V(¢') d¥', (8)
where

s {
g (e’ f) BTr =

Xexp[ l!"‘l‘l] (9)

Kanowledge of U, (#f) gives the collesponding
pai fition function Z(rff) and then the approxi-
mate p(r) may be calculated as the inverse
Laplace transform of Z/f, Actual atomic
and mcelecular czleulations following the

above p.escriptions do not seem to be reported
50 far.

Ap alternative density-functional appioach
15 being develeped by Deb and Ghosh®. Using
the Hartree-Fock relation between the Kinetic
and exchange encrgy density and a nonlocal
approximation to the latter’, gne can wiite
the kinctic epergy-density functicnal as (in
atomic units)

{ I .

+ Kf(r) po’3, (L0)

where K is a constant and fF(r) 15 related to
an average electron density over the ¢xchange
hole. By incerporating EqQ. (10) in the total
ene:gy-density functional and mupinuzing the
latter subject to N-rep.esentability conditions
(see later), one obtains an Euler-Lagrange
nonlinear second-order differential equation:
[“ %VZ T Vs (P) + Diou (l") + Vs (l‘)
+ § Kf(r) p¥3) §(r) = €6(r), (1})

where ¢ is a Lagrange multiplier, p = ¢? and
x¢ denotes exchange-correlation. For atoms,
the encrgy and the shell structure depend
sencitively on f(r), with the maxima i f (r)
corresponding to the minima in the radjal
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density, Note that since Eq. (11) is a
Schrodinges-like equation, ¢(¥) has a veiy
inferesting  interpretation as  the 3D
wave function of a many-electron system.
Numerical results and other details of this
work will be reported elsewherc®.

Thus far, attempts to obtsjin and solve
differential {or integro-differentiz]l) eqQuations
for p(r) acte complicated by the nonlineatity
and higher than second-order chaiacter of the
equations involved. Further, if one variation-
ally minimizes a ‘tota] ¢nergy-density func-
tional which also includes density gradients,
then one can even land with a fowth or
higher order equation! To avoid these
diffizulties Gazquez and Pair!? guggested the
use of tirial densities incorporating ceitfain
parameters that can be adjusted to make the
tollowing energy functional 2 minimum;

Elpl = T, {p]l + T,Ip) + Ty ipl
+ V,, el + J{p} — Klp], (12)

wheve T, 15 the kinetic ensrgy of a Iree electron
gas, T, is 1/9th Weizsacker correction and 7,
s afourth-o-der correction to the Kkinetic
energy ; V,. 18 electron-nuclear attraction ; J
Is electron cloud self-interaction and K is the
exchange energy of a free electron gas. The
original TF model includes only T, V,, and
J whereas the TFD model also includes — X,
(For expresstons ¢f the separate terms in
Eq. (12) see Gazquez and Pair) Theic

suggested trial density for atoms (without the
shell structure) is

C _ ¢
p(r) “’(1 _,_ﬂﬁf.)n! ﬁ-_-fi',

pr) — Ce=®' 3S n— 00,

(13)
(14)

where C 15 a no/malization constant and «a
and 7 ace the vasictional pacametess. For
fist-row aloms, this simple approach yields
energy values within 37, eiror, But, for Ar;
Ni and Kr, the airaf tn enesgy is vather large,
being 26+7, 1056 and 235 Iartrees respec-
tively,*

Lima and Peircira'® have, however, claimed
greater  acouracy  than Gf\muu and Parr

-FFI-.._,_, i

* 1 Hurtreg 15 27- 211 eV,

Fr— p—— o — — —
i LT —

through a trial density which is a sum of two
Yukawa terms :

i
plr) = ;

ida (V0% g0 Nyo3 € a;)’ (15)

where three of the four parameters, N,, Na
and &, a1¢ fixed by TF theory and the fourth
(6,) is varied to make the energy a minimum,
Thus, Eq. (15) gives essentially 2 ong-paras
meter function and i1s apparently a more
attcactive alternative to Gazquez and Parr,
Howevere, Dcb et alt? prefer the Gazguez-
Par approach since the Lima-Ferreira function
has a singularity at the nucleus and involves
an inherent ambigully because of its use of TR
approximation; further, they employ both the
wizve function and a one-electron Schrddinger
equation. Hence, to improve upon the
Gazquez-Pair results, Deb eral'® suggest the
inclusion of a correlaticn funchional in
Eq. (12) and the use of a two-parameter
(structuveless) trial density

p(r) = de®" e B7, (16)
Numeyical results and other details of this
work will be reported elsewhere!®, It is,
however, clear that the accuracy In energy
obtainable with such trial densities will not
be high, and unless one employs a set of
piecewise continuous (e.g., exponential) func-
tions or 2 linear combination of functions®1%1¢
the shell structure in the atomic radial density
will not Le obtained.

In an interesting work, Hall and Martinl®
have sugg:sted the calculation of approximate
electron density from a linear combination of
expansion functions by mintmizing the total
enecgy of the ervor-ficld (the difference between
the true and approximate electric fields). This
onproach is closely related to the Ducichlet
minimun-energy thectem in electrostatics and
negvides & good approximation to the total
Coulomb 2necgy of the electrons,

Finally. the hydradynanveal aaalogy (o
Guarntum nechanics also promises to yield

solve ble differentis! equations far the ¢lectron

denbity. I this approach, the Schrodingar
cquation in the multidimenstonal cmﬁgurmim
space iy replaced by twa hydrodynamical equa-
tions in 3D space, ¥, 2 continuity cguation
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and an Luler ar- a Navier-StoKes equation
of motion, involving the (electror) fluid density
and fluid velosity. The hydrodynimical
analogy, its connection with density-functional
theory and the concert of a molecular stress
tencor have recewved considerable racent atten-
tion (s2¢, ¢.g., Rets, 17-20 and other references
thecein). However, here also one faces the
problem of having a wnonlinear differential
equatior: for the density and no illustcative
density calculation using this approach has

been Tepotted sa‘far.
Whil2 substantial poogress along the afore-

m:>ntioned three lines ¢f attack are expected
in future, it 1s necessary fo remind ourselves
that the direct (alculation of electron density
must satisfy ceftain conditions (ignored by
several teported calculations), associated with
the antisymmetric nature of the N-electron
wave function as well as the latter’s short-
range and long-range behaviour, These condi-
tions may be stated as (sec, e.g., Ref, 21):
(@) N-representability® 23

() p{r) fimte, nonnegative and differentiable
everywhere.

Gy [ p(r)dr = N, (17)
(b) Cusp condition
Lim -;——- + 224 } poa{7a) =0, (18)
ru-}u Fa

wiere r, is the distance from the nucleus of
charge Z; and pya{r,) is the spherically averaged
char ge density,

(¢} Asymptotic condition: The long-range elec-
tron density satisfies the condition
(19)

p(r) ~expl—2(— 2upu)/2r],
where fnee 1s the least negative eigenvalue of o
matrix & which 15 a functional cf the one-
electron and two-electron reduced density
matrices®b 3 3 jts magaitude is not Jess than
the first ionization energy. Use of cusp and
aymptotic conditions is likely to reduce the
number of adjustable parameters in variational

calculations with tilal density functions.
In conclusion, this brief article has high-

lighted the main problems associated with
recent altempts to directly evaluate the electron
density in many-electron systems. Althovgh
a satisfactory solution to this problem is not

yet in sight, considerable p.ogiess toward
this is  expected in future. This should
profoundly influence the future growth of the
quantum nechanics of atoms, moleculcs and
solids, and therefore should have a mairked
ympzct on largs aveas i physical, chemicel
and biological sciences.
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