In general starchy pollen are dispersed by air. Assuming a similar situation for *Cassia fistula*, the starchy pollen produced by it might be responsible for the allergenic effects. This would, however, need further evidence in the form of collection of samples of air-borne pollen, determination of their starch or lipid content and actual tests for allergy causing ability. The results of such studies when considered along with the data on pollen production, types of pollen and mode of dissemination presented in this paper would help in the classification of *Cassia fistula* in terms of their allergenicity.

As no pollen grains could be seen adhering to the outer surface of the style and as groups of pollen were seen only inside the hollow apical part of the style, the receptive surface of the stigma seems to be embedded inside the style.

It has been reported in *Cassia quiedonilla* (Buchmann) and in *Cassia fasciculata* (Thor and Estes), that certain bees bring about pollination, either by their buzzing or vibratory behaviour. Dulberger (personal communication) has also noted that in *Cassia didymobotrya* and *C. auriculata*, pollen are pushed into the stigma by heavy-bodied insects. Though some heavy-bodied insects (honey bee and common wasp) have been observed visiting the flowers, their actual role needs to be carefully examined. Presence of about 250–350 pollen in a single group, within the hollow style, clearly indicates that they might be inserted into it with some force. Although thrips have been seen crawling over the styles and even entering the stigmas along with some pollen, the possibility of only thrips being pollen vectors is quite unlikely as thrips are too small to account for the presence of a large number of pollen noted in most of the stigmas.

Acknowledgement

One of the authors (P. P. S.) is thankful to the C.S.I.R., New Delhi, for providing financial assistance.

MEASUREMENT OF THE RATIO OF THE NUMBER OF X CHROMOSOMES TO SETS OF AUTOSOMES IN DROSOPHILA MELANOGASTER

RAGHAVENDRA GADAGKAR, V. NANJIUNDIAH*, N. V. JOSHI AND H. SHARAT CHANDRA

Centre for Theoretical Studies, Indian Institute of Science, Bangalore 560 012, India

ABSTRACT

In *Drosophila melanogaster* both sex determination and dosage compensation are governed by the ratio of the number of X chromosomes to sets of autosomes. We propose a mechanism by which this ratio can be measured at the cellular level. The mechanism helps in understanding the effects of, and interactions among, mutants affecting the processes of sex determination and dosage compensation.

In the fruitfly, *Drosophila melanogaster*, the rate of transcription of the X chromosome in the male is about twice that of each of the two X chromosomes in the female. As a result, the amount of gene produced per cell in a male, which normally has one X chromosome, and that per cell in a female, which has two X chromosomes, is nearly the same. This method of compensating for the difference between the two sexes in the number of X chromosomes has been called dosage compensation.

It has been known for a number of years that sex in *Drosophila* is determined by the ratio of the number of X chromosomes (X) to sets of autosomes (A).
It has recently become recognised that the mechanism of dosage compensation in Drosophila also involves the measurement of the X/A ratio. We outline here a mechanism which explains how the X/A ratio can be measured at the intracellular level. Since both sex determination and dosage compensation require the monitoring of the X/A ratio, the proposed mechanism has a direct bearing on these two general problems.

Mutants affecting either sex determination or dosage compensation would be expected to yield important information on mechanisms underlying the measurement of X/A ratios. We have therefore examined the properties of such mutants, especially those described by Cline who has studied the characteristics of, and interactions among, a set of remarkable sex-specific lethals. The essential features of these mutations are as follows: (i) Daughterless (da) is an autosomal recessive. Only male progeny of da females survive. Female embryos of da males can also be made to develop normally by injection of cytoplasm from wild-type eggs, lending support to the view that the da gene codes for a diffusible factor essential for female development. (ii) Sex lethal, female specific (SxlF) is on the X chromosome. It is normally recessive, and lethal in females but not in males. (iii) Sex lethal, male specific (SxlM) is very closely linked to SxlF. It is lethal to males, leaves females unaffected and, surprisingly, is a dominant suppressor of daughterless. Cline has shown that the phenotypes of all these mutations can be accounted for on the following assumptions: SxlF is a structural gene which synthesizes the Sxl product; SxlM is the control region which regulates the rate of transcription of the SxlF gene; the da locus produces a factor in the mother which somehow measures the X/A ratio in the fertilized egg and appropriately stimulates the Sxl gene to turn it on if the ratio corresponds to that of a female and to turn it off if the ratio corresponds to that of a male; Sxl product is essential for females and lethal for males. Because Sxl appears to be a dosage-sensitive locus, Cline has speculated that Sxl product might itself be involved in dosage compensation and sex determination. The manner in which the da factor measures the X/A ratio is, however, not specified by Cline.

A simple way by which the da factor could measure the X/A ratio and signal this information to the X-linked Sxl locus is by directing the synthesis of limiting concentrations of an autosomal repressor. If each Sxl locus (comprising both the SxlM and SxlF regions) competes for this autosomal repressor, the amount of repressor bound per Sxl locus would depend on the X/A ratio. This is because the amount of repressor available would be proportional to the number of sets of autosomes while the number of Sxl loci would be proportional to the number of X chromosomes. However, it is not sufficient if the rate of transcription is proportional to the amount of repressor bound per Sxl locus. It turns out that the mutants described by Cline are best explained when the level of Sxl product first increases and then decreases as a function of repressor concentration. Our reasoning is as follows: (i) Daughters of da mothers are inviable because they would have little or no repressor and synthesize little or no Sxl product. (ii) Wild type females would have moderate quantities of repressor bound per Sxl locus because they have two sets of autosomes synthesizing repressor and two Sxl loci per cell to bind it. Males on the other hand would have higher levels of repressor bound per Sxl locus because, while they also have two sets of autosomes synthesizing repressor, they have only one Sxl locus to bind it. (iii) Since the Sxl product is assumed to be essential for females and lethal for males, females would be expected to have higher levels of Sxl product than males. As a result of these three conditions the level of Sxl product synthesized as a function of the amount of repressor bound per Sxl locus should first increase and then decrease as shown in Fig. 1.

In a separate publication we propose a molecular mechanism which yields such a bell-shaped curve and show that the amount of Sxl product synthesized under such conditions is proportional to the X/A ratio over a wide range of chromosome constitutions. If the Sxl product is an inhibitor of X chromosome activity (as postulated by Cline), this proportionality between the amount of Sxl product and the X/A ratio results in an increase in the activity of the single X chromosome in the male relative to that of either of the two X chromosomes in the female; in other words, dosage compensation occurs.

It follows from Fig. 1 that males, which require low levels of Sxl product, will be viable at the two ends of the bell-shaped curve; that is, at both very low and very high levels of repressor concentration. Females on the other hand need high levels of Sxl product and will therefore be viable only at intermediate levels of repressor concentration. One consequence of this is that a partial reduction in repressor concentration should lead to increased levels of Sxl product (see Fig. 1) and therefore decreased viability of males. It should also lead to a decreased rate of X-chromosome transcription in the male. An autosomal mutation is precisely these properties.

We postulate that increasing levels of Sxl product induce a female phenotype whereas decreasing concentrations induce a male phenotype. Departures from the wild type values in the level of Sxl product would be expected to affect both viability and the sexual phenotype of an individual. When a mutation affects the level of Sxl product, but does not signi-
SOLDERING IN ELECTRONIC COMPONENTS AND INSTRUMENT INDUSTRIES (SOLDER SEMINAR—II)

A seminar on the principles and prevalent practices of soldering in industries manufacturing electronic components and instruments is being organised by the Indian Lead Zinc Information Centre, New Delhi. The seminar will be held at the Sea Rock Hotel in Bombay on the 10th and 11th December, 1981.

Discussions held in the seminar will be of interest to scientists, metallurgists, technologists, and R & D personnel of firms manufacturing electronic components and such items as transistor and TV sets, calculators, digital clocks and watches, etc. The deliberations will also be of interest to the concerned government officials in defence, railways, telecommunication, aviation, etc.

Registration: Individuals Rs. 500 (per participant), Companies Rs. 2,000 (maximum 3 delegates).

For registration details kindly write to:
Solder Seminar Secretariat, Indian Lead Zinc Information Centre, II-6/7, Shouting Centre, Safdarjung Enclave, New Delhi 110029.

Last date for registration: 31st October, 1981.