It was thought that the present correction to (eqn. (1) and, therefore) equation (28), i.e.,

\[D = \left(1 - \frac{\omega^2}{k^2 v_A^2} \right) \frac{n_e}{n_0} \frac{KT_s}{eB} \]

might bring the experimental observations into better agreement with Bohm theory. (In actual fact, however, for the parameters of the cited experiments \(\omega/k \ll v_A \) and the correction is small).

Turbulent transport has also been attributed to drift modes (which are closely related to ion acoustic waves) and Kadomtsev\(^5\) has derived (for such waves) a result which is similar to eqn. (13)

\[\frac{n_e}{n_0} = \left(1 - \frac{\omega^2 - \omega^*^2}{k^2 v_A^2} \right) \frac{ep}{KT} \]

and used this to obtain turbulent diffusion coefficients for drift instabilities (Kadomtsev\(^5\), p. 108).

Here \(\omega^* \) is the diamagnetic frequency and \(v_A \) is the Alfvén speed.

4. Conclusions

We have used plasma kinetic theory to derive the relationships between electron and ion relative density fluctuations and normalized plasma potential fluctuations. In the more generalized problem of magnetization acoustic turbulence we find that the simple equality usually assumed for these quantities does not obtain. This result has various consequences, such as modifications to the magnitude of turbulent diffusion.

THE REACTIVITY OF α-CYANOCHALCONEs AS MICHAEL ACCEPTORS

MOHAMED ALL ELSAYED KHALIFA, GAMAL H. TAMMAM, AND EZZAT M. ZAYED

Department of Chemistry, Faculty of Science, Cairo University, Giza, A.R. Egypt

Abstract

Substituted α-cyanoacetophenone reacts with aromatic aldehydes to give the corresponding chalcones 1a-d. Compounds 1a-d reacted with each of malononitrile, ethyl cyanoacetate, α-cyanoacetophenone and ethyl acetoacetate to give the corresponding cyclic Michael adducts IV a, b, V a, b, VII and VI respectively. Similarly substituted α-cyanoacetophenones were readily coupled with a variety of aromatic diazonium chlorides to give the corresponding arylazo derivatives IX a-d.

In spite of enormous literature concerning the reactivity of chalcones\(^1\)–\(^8\) as Michael acceptors, little attention has been paid towards the reactivity of the double bond in α-cyanochalcones as acceptor in the Michael reaction. In continuation of our work on the chemical behaviour of α, β-unsaturated cyano compounds\(^4\)–\(^8\), it has been found that the arylidene derivatives Ia-d, prepared via condensation of β-ketocnitrile derivatives II a, b with aromatic aldehydes, react with malononitrile to yield addition products which may be formulated as III or as the enaminoaryl IV. Structure IV could be established for the reaction product based on spectral data. Thus, the IR spectra of the reaction products revealed absorption of \(v_NH_{2}\), \(vNH_{2}\), and two cyano bands for enaminoaryl CN and for conjugated CN. Also the 1H NMR revealed

* This was printed without figs. on page 441, Vol. 50, May 20, 1981.
EXPERIMENTAL

a-Cyanochalcones:

To a solution of II (0.1 mole) in ethanol (100 ml) was added the appropriate aromatic aldehyde (0.1 mole) and pi-eridine (few drops). The reaction mixture was heated under reflux for two hours and the solvent was removed under vacuo. The residue was triturated with ethanol, filtered and crystallized from ethanol.

2-Amino-3,5-dicyano-4,6-diaryl-4H-pyran (IV):

To a solution of Ia and Id (0.1 mole) in ethanol (100 ml) was added malononitrile (0.1 mole) and the reaction mixture was treated with pi-eridine (2 drops). The reaction mixture was boiled under reflux for eight hours, the solvent was removed in vacuo and the solid product that separated out was filtered and crystallized from ethanol.

2-Amino-5-cyano-3-ethoxycarbonyl-4,6-diaryl-4H-pyran (V, a, b):

Compounds Ia, d reacted with ethyl cyanoacetate using the same procedure for the preparation of IV and the products were crystallized from ethanol.

2-Amino-5-acetyl-3-ethoxycarbonyl-4-p-methoxyphenyl-6-p-chlorophenyl-4H-pyran (VI):

Compound Id was treated with ethyl acetoacetate as above for preparing compound IV and the product was crystallized from ethanol.

\[
\text{IXa, } \text{Ar}=\text{C}_6\text{H}_4-\text{CH}_3(p); \text{ Ar}'=\text{C}_6\text{H}_4-\text{Cl}(p)
\]

\[
\text{b, } \text{Ar}=\text{C}_6\text{H}_4-\text{CH}_3(p); \text{ Ar}'=\text{C}_6\text{H}_4-\text{CH}_3(p).
\]

\[
\text{c, } \text{Ar}=\text{C}_6\text{H}_4-\text{CH}_3(p); \text{ Ar}'=\text{C}_6\text{H}_4-\text{CH}_3(p).
\]

\[
\text{d, } \text{Ar}=\text{C}_6\text{H}_4-\text{CH}_3(p); \text{ Ar}'=\text{C}_6\text{H}_4-\text{Cl}(p).
\]

2-Acetamino-5-acetyl-3-ethoxycarbonyl-4-p-methoxyphenyl-6-p-chlorophenyl-4H-pyran (VII):

A solution of VI (0.1 mole) in acetic anhydride (10 ml) was heated under reflux for five hours. The reaction mixture was then poured onto water (50 ml) and the solid product so formed was collected by filtration and crystallized from acetic acid.

2-Amino-5-p-tolylketon-4-phenyl-6-p-tolyl-5-cyano-4H-pyran (VIII):

Compound Ia was treated with II b as previously described for preparing compound V. The product obtained was collected by filtration and crystallized from ethanol.

a-Aryldiazon-β-oxo-β-phenylpropionitrile (IXa-d):

To a solution of each of IIa and II b (0.1 mole) in alcohol (100 ml) was added a solution of sodium acetate (3.0 g) in 35 ml of water and then the appropriate aryldiazonium salt (prepared from 0.1 mole of the amine and the corresponding quantity of sodium nitrite) was added. The reaction mixture was left at room temperature for one hour and the solid product, so formed, was collected by filtration.
<table>
<thead>
<tr>
<th>Compound</th>
<th>m.p. °C</th>
<th>Yield %</th>
<th>Molecular formula</th>
<th>IR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ia</td>
<td>93</td>
<td>60</td>
<td>C₆H₁₂N₂O</td>
<td>2200 cm⁻¹ (CN), 1650 cm⁻¹ (CO).</td>
</tr>
<tr>
<td>Ib</td>
<td>128</td>
<td>63</td>
<td>C₄H₁₂N₂OCl</td>
<td></td>
</tr>
<tr>
<td>Ic</td>
<td>86</td>
<td>65</td>
<td>C₄H₁₂N₂O</td>
<td></td>
</tr>
<tr>
<td>Id</td>
<td>140</td>
<td>78</td>
<td>C₇H₁₂NO₂Cl</td>
<td></td>
</tr>
<tr>
<td>IVa</td>
<td>135</td>
<td>40</td>
<td>C₂₄H₃₄N₂O₂</td>
<td>3400 cm⁻¹, 3350 cm⁻¹ (NH₂), 2230 cm⁻¹ and 2220 (two cyanos).</td>
</tr>
<tr>
<td>IVb</td>
<td>145</td>
<td>75</td>
<td>C₂₄H₃₄N₂O₂Cl</td>
<td></td>
</tr>
<tr>
<td>Va</td>
<td>152</td>
<td>45</td>
<td>C₂₄H₂₈N₂O₃</td>
<td>3400 cm⁻¹, 3300 cm⁻¹ (NH₂); 2200 cm⁻¹ (conj. CN); 1675 cm⁻¹ (ester CO); 1630 cm⁻¹ (C=O).</td>
</tr>
<tr>
<td>Vb</td>
<td>150</td>
<td>60</td>
<td>C₂₄H₂₈N₂O₄Cl</td>
<td></td>
</tr>
<tr>
<td>VI</td>
<td>210</td>
<td>70</td>
<td>C₂₄H₃₄N₂O₄Cl</td>
<td>3300, 3400 cm⁻¹ (NH₂); 1675 cm⁻¹ (ester CO); 1740 cm⁻¹ (acetyl CO) and 1630 cm⁻¹ (C=O).</td>
</tr>
<tr>
<td>VII</td>
<td>168</td>
<td>70</td>
<td>C₂₄H₂₄NO₂Cl</td>
<td>3200, 3010 cm⁻¹ (NH); 1750 cm⁻¹ (acetyl CO); 1740 cm⁻¹ (amine CO).</td>
</tr>
<tr>
<td>VIII</td>
<td>90</td>
<td>43</td>
<td>C₂₄H₂₄N₂O₄Cl</td>
<td>3300, 3400 cm⁻¹ (NH₂); 1740 cm⁻¹ (benzylic CO); 2220 cm⁻¹ (CN); 1630 cm⁻¹ (C=O).</td>
</tr>
<tr>
<td>IXa</td>
<td>177</td>
<td>80</td>
<td>C₂₄H₁₁₂N₂O₄Cl</td>
<td>2210 cm⁻¹ (CN); 1735 cm⁻¹ (CO).</td>
</tr>
<tr>
<td>IXb</td>
<td>153</td>
<td>75</td>
<td>C₂₄H₁₁₂N₂O₃</td>
<td></td>
</tr>
<tr>
<td>IXc</td>
<td>143</td>
<td>89</td>
<td>C₂₄H₁₁₂N₂O₄Cl</td>
<td></td>
</tr>
<tr>
<td>IXd</td>
<td>221</td>
<td>75</td>
<td>C₂₄H₁₁₂N₂O₄Cl</td>
<td></td>
</tr>
</tbody>
</table>

N.B.: (1) All melting points are uncorrected.
(2) Analytical data agreed with theoretical values within the limits of experimental errors.
(3) IR spectra were measured in KBr on a Pye Unicam SP 1000.

Compound IXa was crystallized from benzene and IXb–d were crystallized from ethanol.

Acknowledgement

The authors wish to thank Dr. M. H. Elnagdi for his kind interest in this work.