This study was supported through a research grant from the Department of Science and Technology, Government of India.

July 9, 1980.

PINJORIAPOLLIS, A NEW FOSSIL POLLEN FROM THE PINJOR FORMATION (UPPER SIWALIK) EXPOSED NEAR CHANDIGARH

R. K. SAXENA AND H. P. SINGH
Birbal Sahni Institute of Palaeobotany
Lucknow 226 007, India

A PALYNOFLORA consisting of 19 genera and 23 species of fungal and pteridophytic spores and gymnosperous and angiospermous pollen grains from the Pinjor Formation (Upper Siwalik) exposed near Chandigarh has been recorded by Saxena and Singh. In this assemblage one genus, viz., Pinjoriapollis, is new. The systematic description of this genus along with its two new species, viz., P. magnus and P. lanceolatus is given below.

Genus—Pinjoriapollis gen. nov.
Type species—Pinjoriapollis magnus sp. nov.

Generic diagnosis.—Pollen grains elliptical or lanceolate in shape (length two and a half times of breadth), heteropolar; large in size, 120–170 × 51–70 μ. Monosulcate, sulcus wide throughout its length, extending from one end to the other. Exine up to 3·5 μ thick, laevigate, faintly intrapunctate, tegellate.

Comparison.—The present genus is comparable with Palmidites Couper in having single furrow (sulcus) and laevigate exine. However, Pinjoriapollis can easily be distinguished by its tegellate exine and exceptionally big size (120–170 × 51–70 μ) while Palmidites is only 70–88 × 30–57 μ in size. Besides, there is remarkable difference in the length/breadth ratio of the said two genera; in Pinjoriapollis length is about two and a half times of the breadth providing it an elongated-elliptical shape; while in Palmidites length is little less than twice of its breadth providing it a ± oval shape. The present genus is also comparable with Areceipites Wodehouse in being monosulcate but in the latter furrow is closely tight throughout its length, not gapping at its ends, which is not the case with Pinjoriapollis. Moreover, the type species of Areceipites, viz., A. punctatus has minutely pitted exine and thus differs from the present genus. The other comparable genus, Palmag pollenites differs from the present genus by its very small size (24 μ in length) and by having a small and narrow sulcus which does not extend from one end to the other and is slightly globular at its ends. Liliacladites Couper and Clavatipollenites Couper are also monosulcate but are distinguishable by their reticulate and clavate exine respectively.

Among the extant polka grains, Pinjoriapollis resembles with those of Magnolia grandiflora and M. hamorii except for the size. The length of Pinjoriapollis ranges between 120 to 170 μ while length of pollen of Magnolia spp. is up to 110 μ. It is therefore most likely that Pinjoriapollis may be related to some members of the family Magnoliaceae.

Pinjoriapollis magnus sp. nov.

Diagnosis.—Pollen grains oval-elliptical, 120–148 × 62–70 μ. Monosulcate, sulcus wide, extending from one end to the other, sulcus widening more towards one end. Exine 2·5–3·5 μ thick, laevigate, occasionally faintly intrapunctate (Figs. 1–2).

Holotype.—Fig. 1, size 148 × 62 μ; Regd. Slide No. 6196/5, Birbal Sahni Institute of Palaeobotany, Lucknow.

Type Horizon and Locality.—Pinjor Formation (Upper Siwalik), near Chandigarh, India.

Pinjoriapollis lanceolatus sp. nov.

Diagnosis.—Pollen grains lanceolate, 123–170 × 51–62 μ. Monosulcate, sulcus generally reaching from one end to the other, occasionally shorter. Exine up to 1·5 μ thick, laevigate (Fig. 3).

Holotype.—Fig. 3, size 170 × 62 μ; Regd. Slide No. 6193/9, Birbal Sahni Institute of Palaeobotany, Lucknow.

GENETIC STUDY OF CLEISTOGAMY IN RICE (ORYZA SATIVA L.)

G. L. KOLHE* AND N. R. BHAT**
Agricultural Institute, Kosbad Hill 401 703 Thane District, Maharashtra, India

In a collection of tribal rice varieties studied at this Institute in 1971, a variety Dhundhuni was found to be cleistogamous. In this case, the glumes did not open at all, though fertilization and grain setting took place normally inside the florets. During anthesis, the glumes were firmly clasped and could be separate only with great effort. Both male and female organs developed satisfactorily. Pollen was healthy and viable and could be used in hybridisation. Such cleistogamy was reported by Kadam and Patil2, Chandraratna1 and Parmar et al.8 have stated that 'Sathi' varieties of Uttar Pradesh (India) also are cleistogamous. In their case, however, the panicle itself does not emerge from the boot-leaf sheath.

For genetic study of cleistogamy, reciprocal crosses of Dhundhuni with other varieties were tried. For obvious reasons, Dhundhuni flowers could be emasculated only by the clipping method. Seeds resulting from genuine crosses made in this way were shrivelled. On germinating 21 such seeds, the seedlings died within a week. On the other hand, Dhundhuni pollen used on 3 other varieties gave normal crossed seeds. F_1 plants resulting from these crosses were only chasmogamous indicating that cleistogamy was of a recessive character.

With a view to determining the kind and the number of genes involved in its inheritance, 465 F_2 plants of the cross, Blue Belle × Dhundhuni, were raised in 1972. As not a single segregate bore cleistogamous flowers and as the character could be a multiple recessive, a fresh round of crosses was undertaken with I.R. 8 and Chandana as the female parents. These provided additional 1104 and 714 F_2 plants respectively in 1980, but without producing a single cleistogamous one.

* Training Associate, Agricultural Institute, Kosbad Hill.
** Emeritus Agricultural Scientist.