PODOSPORA FAURELLII.
A NEW COMPETITOR IN THE MUSHROOM (VOLVARIELLA VOLVACEA) CULTIVATION

NITA BAHL AND P. N. CHOWDHRY
Mycology Division, IARI, New Delhi 110 012, India

Podospora faurellii was found growing on spawned paddy straw mushroom bed. This fungus is the first record from India and elsewhere it has only been recorded in soil. During August 1979, when the temperature was ranging between 30-35°C at I.A.R.I., New Delhi, the growth of Volvariella volvacea was totally inhibited after spawning and the whole heap of paddy straw was covered with dark black spores mass of this inhibitory fungus resulting in a complete loss in yield. The culture and the specimen of P. faurellii has been deposited in ITCC and HClO respectively at I.A.R.I., New Delhi 110 012.

Podospora faurellii Mouchacca in Rev. Mycol. 38, 109-113, 1975

The fungus readily grows on carrot potato agar and the colony attains a diameter of 6-7 cm at 28-30°C after twelve days of incubation. The colony is floccose, olive green, reverse dark green, pigments not diffusing in agar medium. The basal mycelium is olive to dark brown. Perithecium formed after 20-25 days, dispersed and immersed into the medium, globose to pyriform, 250-350 μm in size, covered with long flexuous, brown, septate, 2-3 μm wide hairs. Peridium moderately thick and light brown in colour. Asci 8 spored, cylindrical to long claviform, 140-180 x 15-20 μm, pediculate, release in group on squeezing the perithecium. Apical pore not distinct. Paraphysis filiform, septate and evanescent. Ascospores uni- to biseriate, ellipsoid, 18-22 x 12-18 μm, oliveaceous to dark brown. Primary appendage basal, triangular, hyaline, 4-6 μm in length and 3-5 μm in width. Secondary gelatinous appendage not present.

The Indian specimen differs from the type which was originally isolated from soil Kharga sands, Egypte desert in having considerably smaller perithecia and basal appendage of ascospores (Figs. 1-5).

On decomposed Oryza sativa straw, N. Bahl and P. N. Chowdhry, I.A.R.I., New Delhi, ITCC 2732 and HClO 33329.

Sincere thanks are due to Dr. L. M. Joshi, and Dr. J. N. Kapoor, Senior Mycologist, Mycology Division, I.A.R.I., New Delhi, for encouragement.

October 14, 1980.

FOAM SPORA FROM ANDHRA PRADESH, INDIA

C. MANOHARACHARY
Department of Botany, Science College
Osmania University, Salfabad
Hyderabad 500 004, India

AND

A. B. S. MURTHY
Department of Botany, Sri Y.N. College
Narsapur, West Godavari District, India

Foam formed in well aerated streams, rivers, at barriers, stones and below water-falls acts as a trap for many fungal spores of aquatic and nonaquatic origin. Many fungal spores are readily captured by air bubbles. Mycoflora of foam has been studied in various parts of the world. However little or no information is available regarding foam mycoflora from India². Therefore foam samples were collected during 1978-79 from streams of Anattagiri and Mannanur forest localities and also from the Godavari river (Narsapur, West Godavari District). Fresh foam and foam samples fixed with few drops of formalin-alcohol (1:5) were scanned under the microscope and identified besides recording their spore abundance following standard methods³.
TABLE I

<table>
<thead>
<tr>
<th>Fungal species</th>
<th>Frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alatospora acuminata Ingold</td>
<td>RA</td>
</tr>
<tr>
<td>Bellirania sp.</td>
<td>RA</td>
</tr>
<tr>
<td>Chaetospermum elastice Koorders</td>
<td>RA</td>
</tr>
<tr>
<td>Claviripsis bulbosa Anastasiou</td>
<td>RA</td>
</tr>
<tr>
<td>Diplocladiella scalaroides Arnaud</td>
<td>FA</td>
</tr>
<tr>
<td>Lunulospora curvula Ingold</td>
<td>MA</td>
</tr>
<tr>
<td>Robillarda sessilis Sacc.</td>
<td>RA</td>
</tr>
<tr>
<td>Tetraploa aristata Berk, and Br.</td>
<td>MA</td>
</tr>
<tr>
<td>Tricelophorus monosporus Ingold</td>
<td>MA</td>
</tr>
<tr>
<td>Ascomycete spores</td>
<td>RA</td>
</tr>
</tbody>
</table>

MA—More abundant; FA—Frequent appearance; RA—Rare appearance.

All the fungi observed have been listed in Table I in relation to their abundance. It is evident that *Diplocladiella scalaroides*, *Lunulospora curvula*, *Tetraploa aristata* and *Tricelophorus monosporus* were either abundant or more frequent than other fungal spores. The conidia of *L. curvula* and *T. monosporus* were observed in foam and scum samples of rapidly flowing unconfined stream of Kambakkam hills. Spores of *Claviripsis bulbosa* and *Alatospora acuminata* were less frequent in appearance. Few spores of *Bellirania sp.*, *Chaetospermum elastice*, *Robillarda sessilis* and an unidentified ascomycete were also found in foam samples investigated. Among the fungi listed in Table I, *A. acuminata*, *C. bulbosa*, *D. scalaroides* and *L. curvula* are regarded as fungi of aquatic origin, while others have been classified as extra-aquatic.

The authors are thankful to the Head, Department of Botany, Osmania University, for encouragement. One of the authors (ABSM) is thankful to the Management and Principal, Sri Y. N. College, Narsapur, for facilities and encouragement.

October 31, 1980.

Fusarium redolens Wollenw.—A NEW PATHOGEN OF POTATO

R. P. Rai

Division of Plant Pathology
Central Potato Research Institute, Simla 171 001
India

In April 1978, freshly harvested tubers of Kufri Jyoti were found to be seriously affected with *Fusarium sp.* Studies were carried out on the identification of the species and its pathogenicity on different potato varieties/hybrid.

The infected tubers developed circular lesions (1·0 cm dia) on the surface (Fig. 1), rotting of the bruised surface and dry rot patches. Within a week these developed typical dry rot symptoms with characteristic circular wrinkles on the affected areas when incubated at 20°C. Sclerotial pustules were also formed when incubated at 50–70% RH. On cutting, the underneath flesh showed light to dark brown discolouration.

Small infected pieces from disease samples were surface sterilized and placed on PDA. From all infected pieces only one type of fungal colonies grew. Colonies had relatively flat aerial mycelium and produced a pale reddish-brown colour in the medium. The surface of the colonies turned powdery in appearance due to subsequent sporulation. Microconidia formed on phialides were oval to cylindrical and measured 7–14 × 3·2–4·0 μ. Macroconidia were 3–5 septate.

![Fig. 1. Tuber infected with *F. redolens* showing dark circular lesion.](image-url)