
Pseudocercosporella ochracea is markedly different from *P. gyrocarpi* Karan and Mulder in having poorly developed and septate stroma; conidiophores small, septate, clavate, thick walled and 1–4 forked at the apex, and cylindrical, small, 1–14 septate, slightly constricted at septa, yellowish brown conidia (Table I).

The author is indebted to Dr. J. L. Mulder, CMI, Kew, England, for confirming the identification, to Prof. K. S. Bhargava, Head, Botany Department, Gorakhpur University, for providing facilities, to Dr. Kamal, Botany Department, Gorakhpur University, for valuable guidance and suggestions and to Dr. E. K. Cash, 505 Clubhouse Road, Binghamton, N.Y., for Latin diagnosis.

July 10, 1980.

FRUIT GALLS OF PROSOPIS CINERARIA (L.) DRUCE—A NEW RECORD

A. K. SHARMA AND D. K. AWASTHI
Department of Botany, M.M. (P.G.) College
Modinagar 291 204, India

During the collection of plants, poor yield of fruits of *Prosopis cineraria* (L.) Druce, growing on the roadside, Modinagar, was observed. Examination of the affected plant revealed severe infestation of fruit galls (Fig. 1). The mite causing the infection was identified as *Eriophyes prosopidis* Sak snea.

The gall on the fruit involves the initiation of a ce cidogenic reaction of the plant in the immature fruit, after the fertilization of the ovary. Extensive cell proliferation in all parts of the fruit results in the formation of an undifferentiated, spongy, parenchymatous mass of tissue and total arrest of development of seeds. Anatomical study reveals that the immature galls have irregular cavities but as growth progresses the cavities become completely obliterated by in growth of irregular septa from the side walls.

The galls are irregularly oval-globular, indeliscent and often many galls agglomerated. They are greenish yellow, smooth and vary in size from 2 to 4 cm in diameter. They have a minute ostiolo outside which persists even in mature fruit galls. The Cecidozoa was not observed as it presumably escaped after infecting the fruit.
but fail to set fruits. These plants, in addition to exhibiting several distinctive vegetative features, consistently show marked floral variations not only among themselves but also in comparison with the diploid. Although the haploid flowers are totally sterile, they share a few common features with those of the diploid like, the retention of the petal colour and possession of the component floral parts. But the three types of haploids reveal consistent individualistic variations with regard to the size of the flower, shape of the corolla tube and the opening of its lobes. Results of a statistical analysis of these variations in flowers are given in Table I. The flower length of the diploid with associated features like the uniform opening of the corolla lobes and the sudden dilation of the upper part of the corolla tube are inherited in the flowers produced by the ‘generative’ plant (Fig. 1A, A1: C, C1). In the flowers produced by the ‘vegetative’ plant (Fig. 1B, B1), the average length of the flower is significantly shorter than that in the diploid, and the corolla tube is typically trumpet-shaped, a feature not seen in the diploid. Further, in the flowers of the ‘vegetative’ plant one or very rarely two adjacent corolla lobes fail to open out, a feature consistently repeated in the flowers borne on the vegetative sector of the chimoral derivative (Fig. 1D, D1). The corolla lobes of flowers on the generative sector of the chimera (Fig. 1E, E1) behave in the same way as those of the diploid and the pure ‘generative’ plant; however, the flower length stands in comparison with those produced by the ‘vegetative’ plant and on the vegetative sector of the chimera.

The ‘t’ values of 2.26 and 2.44 obtained respectively for the floral lengths of the diploid plant (parent) and the pure ‘vegetative’ plant, and diploid (parent) and the chimeral plants support our observation that the difference in their floral length is significant whereas

VARIATION AMONG FLOWERS OF ANDROGENETIC TOBACCO HAPLOIDS

V. V. ANAND, GOVINDAPPA D. AREKAL AND B. G. L. SWAMY

Department of Botany, University of Mysore
Manasagangotri, Mysore 570 006, India

In continuation of our communications on cultures of androgenic embryos of Nicotiana tabacum cv. FCV Special, we now report the successful growth to maturity of haploids derived exclusively from the vegetative cell, the generative cell and the chimeral combination of the two. Based on ontogeny the three types of haploids have been designated the ‘vegetative’ plant, the ‘generative’ plant and the ‘Chimera’. All of them produce abundant flowers

* Since deceased.

TABLE I

Results of floral analysis

<table>
<thead>
<tr>
<th>Flowers of haploid</th>
<th>Flowers of diploid (parent)</th>
<th>Vegetative</th>
<th>Generative</th>
<th>Chimera</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number analysed</td>
<td>40</td>
<td>40</td>
<td>20</td>
<td>80</td>
</tr>
<tr>
<td>Average length</td>
<td>(in cm.)</td>
<td>4.9</td>
<td>4.14</td>
<td>4.6</td>
</tr>
<tr>
<td>% with infolded corolla lobe</td>
<td>Nil</td>
<td>97.5</td>
<td>Nil</td>
<td>55</td>
</tr>
</tbody>
</table>

* Critical value of ‘t’ at 5% degree of freedom = 2.074—Significant.
Critical value of ‘t’ at 1% degree of freedom = 3.792—Highly significant.