appear specifically enriched greater than two fold after cycloheximide administration. Both of these groups reported that mRNA for the enzyme tyrosine aminotransferase was enhanced 4 to 6 fold after cycloheximide treatment. Hofer and Sekers7 had also shown that the mRNA for tryptophan oxygenase was also enriched 2 fold. Ernest et al.8 reported that the effect of cycloheximide on mRNA tyrosine aminotransferase was specific and did not involve the general enrichment of all mRNAs. These authors suggested that the inhibition of protein synthesis prolonged the half life of these mRNAs. Alberghina et al.9 reported that the cycloheximide stimulated the relative rate of ribosome synthesis (both mRNA and r-protein). Lindell and Duffy9 reported that intraperitoneal administration of cycloheximide to rats produced a time-dependent rise in nuclear RNA poly II activity while RNA Poly I activity was found to be reduced to about 64%. Klis and Hak10 reported that the synthesis of wall bound invertase activity was enhanced in the presence of cycloheximide. Thus there can be several reasons for the increase in the levels of iso-citrate lyase in the presence of cycloheximide. The relative changes in the rates of activation or inhibition of iso-citrate lyase when the culture is grown in different carbon sources is not understood. It nevertheless suggests that the interpretation of results, when cycloheximide or any other protein synthesis inhibitors are used, should be done cautiously.

September 30, 1980.

Pseudocercospora ochracea sp. nov. from India

S. Singh

Division of Mycology
U.P. Council of Sugarcane Research
Shahjahanpur 242 001, India

During the survey of phytopathogenic fungi of Gorakhpur region, the author has collected a *Pseudocercospora* in February 1976 from Madhuala Range of Gorakhpur Forest Division, which on critical examination proved to be distinct from other known species and is described here as a new taxon.

Pseudocercospora ochracea S. Singh sp. nov. (Fig. 1)

Colonies round, sparsae, hypophyllae, obscure flavae, 4-12 mm diametro, cerebro effusae; mycelium e hyphis partim superficialibus, partim immersis, sepsatis, subhyalinitis, levibus ad 3μ diametro compositum; stroma parum evolutum, e cellulis paucis luteo-brunneis, 8-5-36-0 μ latis compositum; conidiophori singulares per stromata producti, raro fasciulati, septati, simplices, haud ramosi, cerebro apicem versus fureati, valides, crasse tunicati, cylindrici vel clavati, apice palli ndri, 12-5-62 × 3-5-10 μ; cellulae conidiogenae integratae, terminales, polyblasticae, raro monoblasticae, determinatae, cylindricae vel clavatae, plus minusve elaticibus notatae, ad finem semel bis quinquies fureatae et manifeste incrassatae; conidia

![Figure 1](image_url)

Figure 1. *Pseudocercospora ochracea* sp. nov. (a) Conidiophores with attached conidia. (b) Single conidiophores with conidia. (c) Conidia.
TABLE I
Dimensions of Pseudocercospora ochracea and P. gyrocarpi

<table>
<thead>
<tr>
<th></th>
<th>P. ochracea</th>
<th>P. gyrocarpi</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stroma</td>
<td>8.5–36.0 μ</td>
<td>51–68 μ</td>
</tr>
<tr>
<td>poorly developed and septate</td>
<td>well developed and aseptate</td>
<td></td>
</tr>
<tr>
<td>Conidiophores</td>
<td>12–62 × 3.5–10.0 μ</td>
<td>34–68 × 7.5 μ</td>
</tr>
<tr>
<td>Small, septate, clavate, thick walled and 1–4 forked at the apex</td>
<td>long, rarely septate, cylindrical and not forked</td>
<td></td>
</tr>
<tr>
<td>Conidia</td>
<td>40–140 ×</td>
<td>75–195 ×</td>
</tr>
<tr>
<td>3.0–8.5 μ</td>
<td>5.5–10.5 μ</td>
<td></td>
</tr>
<tr>
<td>1–14 septate, cylindrical, obclavate, not slightly constricted at septa and septa, hyaline yellowish brown</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Pseudocercospora ochracea is markedly different from *P. gyrocarpi* Karan and Mulder in having poorly developed and septate stroma; conidiophores small, septate, clavate, thick walled and 1–4 forked at the apex, and cylindrical, small, 1–14 septate, slightly constricted at septa, yellowish brown conidia (Table I).

The author is indebted to Dr. J. L. Mulder, CMI, Kew, England, for confirming the identification, to Prof. K. S. Bhargava, Head, Botany Department, Gorakhpur University, for providing facilities, to Dr. Kamal, Botany Department, Gorakhpur University, for valuable guidance and suggestions and to Dr. E. K. Cash, 505 Clubhouse Road, Binghamton, N.Y., for Latin diagnosis.

July 10, 1980.

FRUIT GALLS OF *PROSOPIS CINERARIA* (L.) DURCE—A NEW RECORD

A. K. SHARMA and D. K. AWASTHI
Department of Botany, M.M. (P.G.) College
Modinagar 291 204, India

During the collection of plants, poor yield of fruits of *Prosopis cineraria* (L.) Druce, growing on the roadside, Modinagar, was observed. Examination of the affected plant revealed severe infestation of fruit galls (Fig. 1). The mite causing the infection was identified as *Eriophyes prosopidis* Saksena.

The gall on the fruit involves the initiation of a cecidogenic reaction of the plant in the immature fruit, after the fertilization of the ovary. Extensive cell proliferation in all parts of the fruit results in the formation of an undifferentiated, spongy, parenchymatous mass of tissue and total arrest of development of seeds. Anatomical study reveals that the immature galls have irregular cavities but as growth progresses the cavities become completely obliterated by in growth of irregular septa from the side walls.

The galls are irregularly oval-globular, indelisent and often many galls agglomerated. They are greenish yellow, smooth and vary in size from 2 to 4 cm in diameter. They have a minute ostiole outside which persists even in mature fruit galls. The cecidooza was not observed as it presumably escaped after infecting the fruit,