Bracoon sp., was found in comparatively large numbers on the host. About 80% parasitization by Bracoon sp., was noticed in a sample collected from Mercara (Karntataka). Earlier, Rao et al. have reported two natural enemies, Dimorphismus kiesenwetteri (Meyr.) (Torymidae) and Symromys sp. (Pteromalidae) against this teophritid fly in India and they have also reported that this gall-maker had not effectively controlled this weed in the studied areas. This record of two new parasites, Bracoon sp. and Eurytoma sp., substantiates the earlier observation and accounts for the failure of this teophritid fly as a biological control agent against E. adenophorum in the areas covered by the present study.

Thanks are due to Prof. T. N. Ananthakrishna, Loyola College, Madras, for encouragement, facilities and guidance, and the Director, Commonwealth Institute of Entomology, London, for identifying the parasites.


HENNEGUYA THERINALIS N. SP.
PARASITIC IN THE BRAIN TISSUE OF THE LOACH, LEPIDOCEPHALICHTHYS THERINALIS (HAMILTON)

D. Seenappa, L. Manohar and R. M. Prabhu
Fish Pathology Unit, College of Fisheries
Mathsyanganagar, Mangalore 575 002, India

Myxosporidians, parasitizing the fresh, brackish and salt water fishes, have cosmopolitan distribution and are known to infect almost all organs of the fish. The best known pathogenic myxosporidians of freshwater fish belong to the family Myxobolidae which includes the genus Hennegeuya among others. In 1944, Davis divided the species described under this genus into three genera, viz., Hennegeuya, Myxobilatus and Unicada. In India, Hennegeuya ophiocephali was first described by Chakravarty from Ophiocephalus punctatus. Later, six more species were reported. In the present report another new species of Hennegeuya parasitizing the brain tissue of Lepidocephalichthys thermalis is described.

In the course of investigation on the parasites of freshwater fishes of Karnataka, a sample of fish caught in the tank near Honnenahalli, Chitradurga District was analysed. Examination of the smears of eyes, gills, muscle, heart, kidney, gonad and brain tissue of L. thermalis, stained with methylene blue (1%) and Lugol's iodine, revealed the presence of myxosporidian spores belonging to the genus Hennegeuya in the brain tissue. The spore characters were recorded and camera lucida drawings were made. Since formalin preserved specimens were used, polar filament extrusion was not attempted.

The syntypes have been deposited in the parasitological collections of the Fish Pathology Unit, College of Fisheries, Mangalore, India.

Spore: Pyriform in front view, anterior side round broad, while the posterior end more pointed bearing two bifurcated caudal appendages; spore wall moderately thick and smooth, without articulations. Sutural ridge very distinct, but the sutural line not clear. Polar capsules unequal, the larger pyriform, the smaller ovoidal; the anterior ends of the capsules converge and open to a side from the long axis; polar capsule nucleus small, situated at the posterior end of the capsule. Sporoplasm more or less triangular occupying the extracapsular space; iodinophilous vacuole circular and small; a small, round, sporoplasm nucleus above the iodinophilous vacuole.


Polar capsules larger: length 4.0-5.0, width 2.0-3.0; smaller: length 3.0-4.0, width 1.5-2.0, thickness, 5.0.

Caudal appendages: length 11.0-13.0.

The species described in this report is placed into the genus Hennegeuya based on the morphological characters described by Davis. The characters which relate the present species to the known species of Hennegeuya, taking into consideration other than those described from Indian fishes, have been checked. Of the species described so far, the present one resembles H. ophiocephali, H. quadrifil and H. singhi in having unequal polar capsules, but differs from them in spore shape and size as well as in the size of the polar capsules. In the spore shape this species is comparable with H. otolithi, H. latetis and H. nigricus and in spore size with H. zohari, H. zschokkei and H. salmonis, but, the presence of unequal polar capsules and variation in the size of the capsule and of appendages make it distinctly different from them.

The characters such as the shape and size of spore and the polar capsules, as well as the size of caudal appendages are the important taxonomic characters in establishing a new species of myxosporidian. Since the present species varies in the main taxonomic characters from the others described so far, it is regarded to be new and named as Hennegeuya thermalis after the host species.