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CRYSTAL STRUCTURE ANALYSIS WITH THE MAXIMUM ENTROPY METHOD
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ABSTRACT

The application of the Maximum Entropy Method
investigated. The phase problem leads to new higher order phase relations.

(MEM) to crystal structure analysis is
Simle one-dimen-

sional simulations are presented where the method solves the structure from initial random

phases. It is argued that the jpeak-sesking nature of the MEM is

graphic applications.
fhe maximum deierminant method.

N many fields of experimental physics, one measures
the Fourier transform of the function of interest,
It also invariably happens that only a part of the
TFourier information is available. Therefore, an im yor-
tant problem is to extract the maximum information
possible about the function of interest trom partial
Fourier data. Among theé many schemes that have
been develoged for this, the so-called Maximum
Entro, ¥y Method (MEM) bas evoked much interest in
the fields of geoohysics™™® and radio astronomyh®.
In this paser we suggest that the MEM could be gain-
fully anplied to the phase problem of crystal structure
analysis. We¢ argue that, in many respects, the MEM
is ideally suited to crystallograshic ap,lications. We
present some simple, one-dimensimnal simulations to
bear this out.

We first review briefly relevant features of the MEMoe
Let p(r} be 2 real scalar function of a many-dimen-
sional vector r. Let p () be either (q) non-zero over
only a finite closed volume or () periodically rejeated
over a space lattice. In either case, the Fourier trans-
form of p {r) is completely specified by giving its values
F,, at a discrete lattice of points &, in reciprocal space.
By definition

Fh; — j P (l") Cxp (Zﬂfhj -?‘) dVr: (1)
which leads to the inverse relation
p{r} = %‘ 2 F;,j exp (— I:zihj-r); i on 2 lattice
r Y
(2)

where ¥ is the volume of the * unit cell” of p (r).

l.et us suppose, as is the c¢ase in many applications
in geophysics and radio astronomy, that F, J 1S available
both in am)litude and phase at some of the k; but is
unknown at the rest of the points. A simple-minded
approach would set the unknown F); to zero and com-
pute p (r) through equation (2), The resultant function
would generaily suffer from loss of resolution and
would also have termination ripple. The MEM instead

ideally suited to crystallo-

It 15 suggested that there is an intimate relation between the 'MEM and

prescribes that the unknown Fy; should be chosen so
as to maximise the “entropy*® § defined below,

§= [ Flp(r)]av.,. (3)

F 1s a suitable real function of 2 {ry whose properties

are discussed later, Substituting (2} in (3) and &ife-

rentiating with respect to the unkrown F, ,
obtains that j

J' F'[p(r)]exp (— Z?Iflgj-r) dVr =0

for unknown F, ; @)

where the prime denotes differentiation with resJec
to the scalar argument. If G, ; are the Fourier coeffi-

cients of F'{p(r)], eq. (4) imo>lies that
Gy, =0 for unknown Fy,

Oone

(5)
We note that egs. (5), which are well known?, gene-
rate as many conditions to be satisfied as there are
unknowns. For a suitable choice of F, the solution
Is unique®®, Tterative numerical algorithms car be
developed® which seek to achieve the conditions in
(5). In general, the MEM solution generates non-
zero values for the unknown F, ; 'Thus, one recon-
struzts a p(r) with imoroved resolution as well as
reduced rile.

The results of the MEM depend on the choice of

the function F. The following properties of F have
been identified as crucialé :

(@) F* should always be negative,
(5} F’” should always be positive.

Traditionally, the following two forms of eNIropy
have been studied, both of which satisfy the above

requirements :

@ 8= [Inlp@ldr, (6)
By (5) this leads to the result that [p ()] is “ band-
limited *, i.e., Lp {(+)}J™ has only a finite number of non-

zero Fourier coefficients (they are in fact located at the
h, correspending to the measured Fy).

Oyt Si=—] p(NInlp (] av,.
This requires that In{p (+)] be band-limited.

()



Current Science, February 20, 1981, Veol. 50, No. 4

169

The MEM as developed so far cannot be directly
applied to crystal structure analysis because of the
phase problem, Tt is therefore necessary to generate
new conditions, in addition to (5), corresponding to
the unknown phases. Substituting (2) in (3) and
diifferentiating with resonect to the unkoown phases of
the mzasured amplitudes, one obtains

[ F’[p ()IF, exp (— 2nik, 1)
~— Fp, eXp (2nil;. ry}dV, =0, (8)

where we have employed the propgerty that F, 5 and

F_,. have oppuosite Thases as a consequence of p {r)
being real. Eg. (8) leads to the result that

G‘ﬁjFﬁj _ Gk_;F_ﬁf =O‘ (9)
Since p(r) and F'[p{r)] are real, inversion related

Fourier coefficients are comlex conjugates of each
other. Hence

.G_h.:Ff'j — (G“ﬁJF ﬁj} K (H')
This inplies that G, F), 1s real and therefore

ph(F,) —ph (G, ) =0 or 7 (11)

where ‘“‘ph” means ‘“the phase of”. Egs. {l1)
generate one phase relation corresponding to evecy

P —

MG, 1. (@) Model one-dimensional centrosymmetric
structure. (/) Structure with the same Fouricr am)li-
fudes as in (g) but random phases. {¢) Result of the
MEM algorithm starting with (b).

unknown phase. It is possible to introduce eqs-
{11) into the numerical algorithm jroposed in Ref, 6.
We can thus mmplement the MEM in problems of
crystal structure analysis.

- We have carried out simulations on sinle one-
dimensional “structures” using the “entropy” §,
defined in (6). Typical results on a centrosymmetric
and a non-controsymmetric structure are shownh in
Figs. 1 and 2. In both cases, the algorithm was
initially given the correct amplitudes of the structure
factors and random phases. As it hadpened, the
nitial random phase mas of the non-centrosymmetric
structure was nearly centrosymmetric and vice versa
[Figs. 1() and 2(»}. The converged solutions
(Figs. 1 (¢} and 2 {(c)] are sunrisingly close to the true
structures. There is, of course, an origin shift in
both selutions and the absolute configuration of Fig.
2 (c) is opposite to that of 2 {q). These arise because
of the random nature of the initial phases.

Jt should be roted that all centrosymmztric func-
tions automatically satisfy the phase relations (11),
Therefore, to obtain non-centrosymmetric solutions,
1t )5 necessary to take suitable precautions. These
details, as well as the algorithm emloyed, are being
published elsewhere,
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Fa. 2. (@} Model one-dimensional non-centrosym-
metric structure, () Structure with the samte Fourier
amolitudes as in () but random phases.  {¢) Resuls
of the MEM algorithay starting with {(b),
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The general experience of the authorss with the
MEM is that it is ideally suited for certain classes
of applications. Whenever p(r) is close to zero
(0r any constant value) over a large tange of r and
is positive and “peaky” (ver a relatively smaller
range of r, the restorations obtained with the MEM
are very good. In particular, the positions and (to a
lesser extent) the seremgris of peaks are reproduced
very well. On the other hand, the shapes of the
peaks are usually not reliable. Also, if p(t) has
“plateans” e, fairly extensive tegions of approxi-
mately constant “ height™, the MEM restorations
have excessive npple on the tlateaus.

It is remarkable that the weaknesses of the MEM
are quite mmmaterial for crystallograghic applications.
What is important in crystal structure analysis is the
ability to pinpoint the positiors of the peaks, and this
1s precisely what the MEM is most efficient at {once
the peaks have been identified, chemical information
and Jeast socuares usually take over fto refine the
structure), This coupled with our earlizr experience’s
feads us fo believe that the MEM is ideally suited
for crystal structure apalysis. Figs, 1 and 2 support
this view. We should mention that reconstructions
from radio astronomical dath without phases have
been presented by Gull and Daniell® using S, and
the method of least squares,

Jn the one-dimensional case, it has been noted®%s
that maximusation of §; is equivalent to maximising a
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certain determinant built up from strycture factors.
This is strongly reminiscent of the maximum deter-
minant rule'® ' which has been studied in connection

with the phase problem. We are currently investi-
gating this relationship.
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HE moflecular constants of S, and C; molecules
have been evaluated for the first time using the
vibrational frequencies and the molecular parameters.

S.0 molecule belongs to the bent unsymuetrical
XYZ type possessing C, symmetry. It has 3 modes
of vibration, 21l belonging to a’ species. The mole-
cule Cg belongs to the linear symmetric XY, type,
with D,, symmetry. It has 3 modes of vibraticn

distributed as 1Z}% + 12+ 1x,

The force constants of a molecule would offer
valuable irformaticn with regard to the bond strength
of the atoms in the molecule. Further, the force
constants are useful to evaluate the other molecuiar
constants like mean amgplitudes of vibration, Cariolis
coupling coeflicients and centrifugal distorticn constants.
The S;0 molecule has a much lower symmetry comr ared
to the other sulthur oxides and C; melecule has its
bending frequency extremely low, These features



