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ARBSTRACT

An equation of statg is obtained for ionic crystals based on the Born theory by assuming
that the thermal motions of ions are uncorrelated and that the mean vibration energy of each ion
3 KT, The important feature of the theory is that the ™ thermal pressure ** term is written entirsly
in terms of the mteraction potentials, This is an advance over cusrent Born theory equations
of state which require a knowledge of the experimental coeficient of thermal expansion. The
calculated volume thermal expansivities of the alkali halides at room température and atmospheric
pressure are in good agrasment with experiment (r.m.s. error 12°5%). For many purposes, the
present theory appeats to be an adeqguate approximation foy ionic crystals at finite temperatures,

N the Born theory of ionic crystals'+2, the free energy
per molaecuie of a crystal in the NaCl, CsClor Zn3
stractures at 0° K is written as

* O
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where r is the neatest neighbour distance, aet/r is the
¢lectrostatic interaction, C ard D are the van der
Waals dipole-dipole and dipole-quadrupole coeffi-
Cients, W, _ (r) is the repulsion energy, P is the pressure
and xr?® is the volume per molecnle, The repulsion
énergy is usually written in the form?

rep (r) == ﬂ1k+_(f) + n"z"z{ﬁ-}--z-(g) + [f——(R)] 3
R = 2br (2)

Where 7, and », are the numbers of first and
second neighbours around an jon and R{=20r} is
the distance between second neighbours. %, _, &, .
and f__ are parametrised functions modelled dific-
rently m various approaches™®, The equilibrium
condition is given by
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” ZEWH (R) + A_AR}} + 3xPr? =0 (3)

where the primes denote derivatives with respect to v,

The Bora thoory is quite adequate to describe
number of static properties of ionic crysipls and has
many sucgesses to its credit®®¢, Is chiel advantage
is that calculations are relatively casy, making it both
convenient and practicat. Moreover, the prosend
authors have developed in the rvecant past a formula~
tion of the Born theory™® which enables one to maky
prediciions on the crystal propoities of new  coms

pounds or new phases of existing compounds,
Unfortunately, none of the versions of the Born theory
developed so far can be used to (ompute therm:d
cxpaasion c¢oefficients or other related properties.

There are rigorous theories avanable to describe
the anharmonic properties of crystals’*. The calcula-
tions are however quite formidable and therefore not
in the spirjt of the born theory, The usuai approach
1s through the spectrum of lattice vibrations calculated
by means of harmonic c¢rystal dynamics, To calcu.
late thermal expansion and other anharmonjc Propat.
ties, one either makes the quasi-harmonic appioxi-
mation and calculates the variation of lattice
frequencias with volume or carrigs through the full
anharmonic theory. Naither approach lends itsclf
to quick calculations,

Cuirgntly, Born theory calculations at finitc tempe-
ratures are carried out by means of hybrid equations
of state® such as those of Iildebrand'®* or Mie and
Graneisent’, In those approaches, the thermial cflects
are taken into account through a * thermal pressure ™
term which 15 wrilten In torms of the cyperimental
cocfficients  of thermal  eoxpansion, Such  schemes
which develop a theorctical descrption of & crystal
only aflert expofimental data wre avadable are highly
unsatisfactory, In principle, once the various crystal
tnteractions are given, all crystal propettics including
the anhatmonmc thermal oifouts are  mphcity  Jdes-
cribed by themt, Onre should thacfore be able fo
calculate the *tharmatl prossure ™ tormv diceetly in
ferms of the inderagtion potentals, I thas papar
we present an extension of the Born theery which
atteopls to do this, To nuke the theory as stimplg
as posuble, we make cettain approvimations whivh
arg discussed beline, AL dost sight these may  appedr
(o be rather drastic, A closer invastiation howey er
shows That the theory s physteally quite well founded,
This will be diseused ia g Lter paper by Nenanandy
and Narayan'd,
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In the preseat theory, we make the following simpli«
fying approximations:

{7} We¢ assume that the thermal motions of ions
are totally uncorrelated. As we show below, this is
ejuivalent to assuming that thg ions vibrate in inde-
pendent potential wells, Thus, in offect, we are
replacing the comphcated lathice spectrum by just
two frequencies—one for each type of ion. In a later
paper', an alternative simple theory is developed
which secks to include correlations also in an approxi-

mate way,

()} The energy per mode of vibration is taken to be
kT. We are thus working in the c¢lassical high
temperature rezime and also limiting ourselves to the
quasiharmonijc approximation, One coufd extend the
theory to low temperatures it the quantum regime
by developing aa Einstein-lik¢ theory™ for the two
oscillators. This would be adejuate at all except
vary low t(gmperatures,

We basin by determining the average potential
energy rejuired to displace say a cation by a small
amount {x., Y., Zi)- Taylor expansion of the
various interactions retaining terms upto the second
order shows that in general this depends on the dis-
placements of the other ions also. However, because
of the present approximation that the motions of tons
are uncorrelated, all the cross-terms drop out on
averaging and we can write the average potential
energy of a displaced cation in the form

Wiy, vy 24 = 1/6 [ ‘7,2 I (r)
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where we have neglected the van der Waals intfer-
actions. The Coulomb term vanishes because 7 *(1/r)
is identically equal to zero. Thus, in the present
approximation, we s¢¢ that the ion moves in a poten-
tial well whose shape is independent of the displace-
mants of fhe other ons. The sphertically symmetric
nature of the well 1s a consequence of the high symsmetry
of the structurés which we are considering. By (4),
all cations vibrate with a single frejuency v.. S0
too the anions have ong frequeney y_. Thus, the
present theory models the full lattice spectium by
means of just two frequencies,

From (4), ejualing th3 mean polential energy for
displacements along each of x,, y, and z, to $4r7, we
obtain

l
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A similar expression can be written for the mean
square <isplacements of the anions,

To obtain the equilibrium condition in the pre-
sence of thermal vibrations, we begin by rewriting

the static equilibrium condition (3) in the following
form

ae® 6C 8D d
E 7 ?;+"12;k+—(r)
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- BN ‘&T‘Rh++(R) + P ff—-(R)]
4 3xPr2 = Q. (7)

The terms dh,_(r)/dr,dh, , (R)/dR, etc,, can be intgr-
preted as repulsive forces dirccted along the correspond-
ing bonds and equation (7) gives the condition for the
overall equilibrium of all the forces of interaction.
At Gnite temperatures, the various bond lengths
fluctuate because of thermal vibrations of the ions.
Thus, the repulsive force along a bond also flyctuates

-and this leads to an additional * rectified compo-

nent in ths average repulsion per bond, proportional
to the mean square fuctuation of the bond length,
Including this effect, the equilibrium condition at
finite temperatures becomes
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Equation (8} 1s an equation of stafe for simple ionic
crystals. The extra terms over those in (7) are the
contributions from ** thermal pressure”. As in the
0° K case, {8) requires solving only one transcendental
equation.

Using equation {3) wea have calculated the volume
thermal expansivities § of the alkali balides at room
temperature and atmospheric pressure. For &.__(,
A.+(R) and A__(R), we have employed our com-
pressible ion potentials®»**. The r.m.s. error in the
calculated values of f (Table 1) 1s only 12:3%. A
more defailed investigation scems to suggest that
most of the emrors arise from the use of inadequate

* However, it should be noted that the theory deye.-
loped here can be used with any version of the Born
theory.
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Experimental and theoretical thermal expansivities B{in 107* per ° K) of the alkali halides

e — —

b

CI'}’S‘:EL[ ﬁeiﬂ lgﬂﬂ[ﬂ Error (%) CI'}’StEI.l lgﬂiﬂ )8'3310 Error (%)
LiF 0-92 0-90 — 1-8 KBr 1-10 1-24 12-3
LiCl 1-22 1-15 — 61 K1 1-25 1-33 6-1
LiBr 1-40 1-25 —10-7 RDLE 0:95 1-06 11-6
Lil 1-67 [-44 —13-8 RbCl 0-99 1-21 332
NaF 0-98 1-01 27 RbBr 1-04 1-28 231
NaCl 1-10 I-15 48 Rbl 1-19 1-28 7-8
NaBr 119 1-18 — 0-8 CsF 0-95 0-98 3-1
Nal 1:35 1-35 0-1 CsCi 1:37 1-18 _13-5
KF 1-00 1-10 10-2 CsBr 1-39 1-19 —14-4
T rms. error = 12+ 5%, ‘ o T
interaction potentials rather tban from oversimpli- 2, Tosi, M. P., In Solid State Physics (Editeﬁ by

fications in the theoretical model, We therefore
believe that the present theory is adequate for many
PUrPOSES.

There are many situations where one would like to
have estimates of the properties of real or hypothetical
crystals without having to do the experiments, The
present theory could be used to calculate APProxXi-
mate thermal expansion coefficients of cubic ionic
crystals within an r.m.s. error of about 157,. However,
although we have discussed only thermal expansion
in this paper, the theory has a wider applicability.
We have in (8) an eguation of state for simple
ionic crystals, This has already been of use In a
theory’® which we have daveloped to explain the
electronic transitions in the samarium chalcogenides.
Moreover, we can write an approximate free energy
for the crystal at finite temperatures in terms of the
Einstein oscillators of frequencies v, and v_. This
would be of use in calculeting specific heats and also
in studying phase boundaries at {inite temperatures,

The authors thank Dr. R, Nityananda for many
useful discussions.
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