Habitat: coprophilo.


The authors are thankful to the Director, M.A.C.S., Pune, for providing the laboratory facilities. The present work is supported by Department of Science and Technology, Government of India, under the Grant No. HCS/DST/361/76 and the authors are thankful to the authorities concerned.

Maharashtra Association for the Cultivation of Science, A.V. SATHE.

Research Institute, JEYSON DANIEL.
Law College Road,
Pune 411 004,
May 12, 1979.


verlag. Druckerei Buchler and CoAG, Wabern-

REGENERATION OF PLANTS FROM APICAL MERISTEM TIPS OF SOME LEGUMES

COMPLETE plants have been regenerated from excised shoot apices of various cultivars of Cicer arietinum, Lens esculentum, Pismum sativum, Phaseolus aureus, and P. mungo. Of the various media tested, the best growth response and development of plants were obtained on Murashige and Skoog's medium supplemented with IAA (2 mg/1) + kinetin (0.5 mg/1). The percentage regeneration of plant was directly proportional to the size of the meristem.

Legumes (pulses) are the main source of dietary protein in India and South America. During the last decade, their yield has become almost static as there has been an enormous loss caused by various pathogens, especially viruses. The routine methods of plant improvement seem insufficient to cope with the situation. Therefore attempts are being made to resort to unconventional methods. In this connection, culture of excised meristems is an accepted method employed for obtaining virus-free plants. The present communication is part of a project undertaken to explore the possibilities of employing the in vitro methods for crop improvement, and deals with the regeneration of entire plants from excised meristem of some pulses.

The seeds of various cultivars of Indian pulses, i.e., Pismum sativum L. (cv. PG 3), Phaseolus aureus Roxb. (cv. ML 1, ML 5, G 65), P. mungo L. (cv. Mash 1–1), Cicer arietinum L. (cv. G 543, G 130, L 550) and Lens esculentum Menc’s (cv. L 9–12) were sown in pots under natural conditions. Two to three weeks after germination the shoot tips (1 cm) were removed, surface sterilized with chlorine water for about 15 min and
washed twice with sterile distilled water. Meristems (0.2–2.0 mm) were dissected aseptically under a stereo microscope in a Laminar Flow Cabinet (Klenza's, Bombay) and cultured on the modified agar solidified Murashige and Skoog's medium², supplemented with various combinations and concentrations of IAA, 2,4-D, NAA, casein hydrolysate and kinetin. In each culture 50–125 cultures were raised. They were maintained at 23–27°C and observed periodically.

Figs. 1–5. The in vitro growth response of excised meristem tips of various legumes. Fig. 1. A 2-week-old culture of meristem (0.5 mm) of Phaseolus mungo cv. Marsh 1–1 on MS medium, supplemented with 2,4-D (2 mg/l). Fig. 2. Same, after 5 weeks showing profuse callusing. Fig. 3. A 5-week-old culture of Cicer arietinum cv. G-543 on the basal medium containing NAA (0.1 mg/l) + BA (0.02 mg/l); note the proliferation and emergence of roots. Figs. 4, 5. Showing the regeneration of complete plants of Phaseolus aureus cv. ML-5 on 1AA (2 mg/l) + kinetin (0.5 mg/l), and 5 weeks after culture respectively.

The in vitro growth and development of meristems (0.5–2.0 mm) of various legumes is shown in Figs. 1–5. The meristems showed signs of growth within a week; however, further development was strongly determined by their size. There was a direct correlation between the size and the percentage regeneration of plants (Fig. 6). The longer the meristem tip, the higher was the regeneration. The addition of 2,4-D (1–2 mg/l) to the medium caused a profuse proliferation to form a mass of callus (Fig. 2) whereas the root and shoot formation were strongly inhibited. The relative ratio between auxin and cytokinin considerably influenced the overall response. Increased kinetin (2 mg/l) inhibited root formation whereas IAA at 2 mg/l yielded plants. The best growth and regeneration of the plants were observed on 2 mg/l IAA + 0.5 mg/l kinetin (Figs. 4, 5), however, the response was genotypically oriented. In Phaseolus aureus, the best growth response was shown by the cv. ML 5, followed by ML 1 and G 65, whereas in Cicer arietinum G 130 was the best, followed by G 543 and L 550.

These observations on the regeneration of the entire plants from the excised meristems of various pulses are being utilized for the storage and maintenance of the germplasm.

This work was conducted under the project "Crop improvement through protoplast, cell, and tissue culture", financed by the Indian Council of Agricultural Research.

Tissue Culture Laboratory, Y. P. S. BAJAJ, Punjab Agricultural University, M. S. Dhanu. Ludhiana (India), July 18, 1979.

1. Pulse Crops of India, ICAR, New Delhi, 1970.

A NEW CHROMOSOME NUMBER FOR BALANOPHORA ABBREVIATA BLUME

Hansen³ in his taxonomic monograph on the genus Balanophora J. R. and G. Forst. stressed that the information on chromosomes counts for the taxon is badly needed. This fungi belongs to the family Balanophoraceae and is an obligate parasite. It has about 15 species distributed in the tropical and subtropical parts of the world.¹