conducted under field conditions following standard inoculation techniques. Typical symptoms of infection appeared 6-8 days after inoculation and the optimum temperature and humidity for successful infection ranged from 22-26°C and 80-90% respectively.

Elsinoe arxii: Ullasa and Sridhar sp. nov. (Figs. 3-5).

Infection spots both epi and hypophyllous are sometimes coalesced to form bigger spots. On tender twigs numerous spots were also observed. Infection spots on leaves were irregular, 1-5 mm in diam., brown, erumpent and causes distortion in tender twigs which measure 1-5 x 1-2 mm in diam. Ascostromata sub-ecicular in origin, erumpent, measure 100-200 x 60-120 µm in diameter, locules numerous, globose to ovoid, bitunicate, octosporous, bisaccate and measure 25-30 x 20-27.5 µm in diam. Ascosporae ellipsoidal, thin walled, initially 2-3 septate, later forming longitudinal septa thus become muriform and measure 13.5-16.5 x 5-6.5 µm in diameter. Incites infection spots on living leaves and tender twigs of Ocimum basilicum. Type with Dr. J. A. Von Arx, Baarn, Netherlands, collected by T. S. Sridhar on 15th December, 1978.

Figs. 1-5. Fig. 1. Ocimum basilicum plant showing scab symptoms due to Elsinoe arxii. Fig. 2. Habit of the fungus (Enlarged). Fig. 3. Section through ascostroma x 100 Approx. Figs. 4 and 5. Asci and ascosporae x 350 Approx.

Elsinoe arxii: Ullasa and Sridhar sp. nov. (Figs. 3-5)

Infectionis maculæ epi vel hypophyllæ in foliis, dispersæ, saepe coalescentes et remis numerosæ, maculæ in foliis irregularæ, 1-5 mm diam., brunnae, elevatae, sed in ramis tumide et verrucis 1-5 mm latæ, 1-2 mm crassæ formantes; ascostromata subcircularia, erumpentia 100-270 µm lata 40-120 µm crassa; Loculi numerosi globovi vel ovoidi, bitunicati, octospori, distichi 25-30 x 20-27.5 µm; ascospores ellipsoidæ, tenue tunicætæ primum 2-3 septatae, postea septis longitudinalibus praedictis at tene muriformes 13.5-16.5 x 5-6.5 µm. Inicit macules in foliis et ramis viventibus Ocimum basilicum L. Typus ad J. A. Von Arx Netherland. Leg. T. S. Sridhar, 15th December 1978, Hassaraghatta, Bangalore.

Conidiophore bearing minute conidia representing Speculum stage of Elsinoe was found closely associated with this fungus.

The authors are grateful to Dr. H. S. Schi, Senior Plant Pathologist, for his interest in this study. Our thanks are also due to Dr. J. A. Von Arx, Director, Central Type Cultural Collection, Baarn, Netherland, for confirming the identity of the fungus.

Indian Institute of Horticultural Research,
B. A. ULLASA.

T. S. SRIDHAR.

255, Upper Palace Orchards,
Bangalore 560 006,
May 19, 1979.

SURVIVAL OF ALTERNARIA TRITICINA, INCITANT OF LEAF BLIGHT OF WHEAT

The leaf blight of wheat caused by Alternaria triticina Prasada and Prabhu is known from different states in India. A study of the mode of survival of the pathogen was carried out during the summer months of 1975 and the results are reported here.

The blighted leaves were cut into small pieces and kept in unsterilized soil in earthenware pots on the surface and at depths of 5 cm and 10 cm. Some pots were incubated outdoors and others indoors. Entire infected earheads were stored in paper bags in the laboratory. The infected material was periodically removed, surface sterilized and plated out. The survival of spores in soil was studied by adding a thick suspension of spores to soil surface and covering it with a 2.5 cm layer of soil. The soil with spore suspension was collected periodically by removing the top layer, suspending a sample in sterilized water, centrifuging and plating out. The pathogenicity of the isolated colonies was verified by spraying the spore suspensions on five week old plants of a susceptible wheat variety (Kalyan Sona).

Alternaria triticina could survive for only two months in the plant debris placed on the surface of the soil and for four months in the debris buried in soil. It was present after three months in the leaf material while it could be obtained from the infected seeds even after ten months. The spore suspension in soil lost viability
within one month. These results indicate that the fungus cannot survive during summer (March-July) in the diseased leaves but remains viable in the seeds.

Prabhj and Prasada assumed that the fungus may be present in the seed and may sporulate with the onset of rains causing infection of lower leaves of wheat plants. The present study confirms that the principal method of survival of the fungus is through infected seeds.

The senior author is thankful to CSIR, New Delhi, for financial assistance. This forms part of his thesis for which Ph.D. Degree was awarded by Nagarjuna University.

* Present address: Plant Quarantine and Fumigation Station, 335, Beach Road, Tulicorin 628 001 (TN), India.

THE SOMATIC CHROMOSOMES IN \textit{AJUGA GENEVENSIS} L. (LABIATAE)

The taxon \textit{Ajuga genevensis} L. belongs to the tribe Ajugoideae of the family Labiatae according to Engler and Prantl's system of classification1. During the investigation of somatic chromosomes of this taxon it has been found that this taxon is characterized by the diploid autosomes, B-chromosomes and polytene chromosomes in the very root tip. In the present note all these chromosomes are dealt with.

The material was collected from the natural populations of the hills of Georgia, USSR. The healthy roots were pretreated in a bromonaphthalamine for 3 h at 6\degree C. Fixation, softening and staining were done following the method of Bhattacharyya8.

The diploid chromosome number varies between $2n = 28$ and $2n = 32$ while the length varies between 1 μm and 2.9 μm. The most frequently occurring number is $2n = 32$. This is in conformity with the previous report2. The B-chromosomes are found to vary between 0 and 5. However, the frequency occurs between 2 and 3 in most of the cases. B-chromosomes are allocyclic in nature. They could be detected in early metaphases. The length varies between 0.3-0.7 μm. The variation of somatic chromosome number may be due to the presence of B's as found its parallels in major B-containing taxa3. B-chromosomes have been reported already in 4 species of \textit{Salvia} belonging to the family Labiatae3. But in this taxon this is the first report (Fig. 1).