RECOMMENDATION TRANSLOCATION IN TRITICUM SPIELTA

SPONTANEOUS chromosomal interchanges have been observed between many wheat varieties (Baker and MIntosh; Riley, Coucoli and Chapman; and Kimber). The chromosomes from the A genome and especially B genomes are much involved in these interchanges, while the D genome chromosomes are less involved. Some of these interchanges have been localized to specific chromosomes by means of crosses to monosomic or other aneuploid lines. Especially the Chinese Spring aneuploid lines have been used for this purpose.

The present report includes the crosses between Chinese Spring aneuploids and Triticum spelta, studied at Institute of Plant Breeding, University of Göttingen (W. Germany). F1s of the disomic cross between the variety Chinese spring and T. spelta and most of the more F1s between Chinese Spring monosomics and T. spelta showed one ring or chain-shaped quadrivalent, or one trivalent and one univalent at metaphase I (Fig. 1). In these crosses no multivalent were expected as Riley et al. have reported the primitive hexaploid chromosome structure in T. aestivum, spelt a, but those F1s showed quadrivalents or trivalent and univalent in about 35% of the cells analysed. Since the variety Chinese Spring is considered the most primitive variety in respect to chromosome structure (Riley et al.), the observations in the present study indicate the presence of reciprocal translocation in the chromosomes of T. spelta. However, the chromosomes involved in the translocation could not be identified.

These types of spontaneous chromosomal translocations found in common wheat varieties may interfere in cytogenetic work since the localization of genes to specific chromosomes may be disturbed from such translocations.

Author wishes to thank Prof. Dr. G. Robbelen, Director, Institute of Plant Breeding, University of Göttingen (W. Germany), for providing necessary facilities. Financial assistance from German Academic Exchange Service is duly acknowledged.

Department of Botany,
Post-Graduate Institute,
Punjab Prinshi Vigyanpeth,
Akola (M.S.), India, July 22, 1978.

A NEW SPECIES OF PERICONIELLA FROM INDIA

DURING a survey of fungi of Gorakhpur region, the authors have collected an unusually large number of parasitic forms on various pantherogamic plants. Some of these have already been described. In February, 1976 a leaf spotting domatiousus hyphomycete was collected on Litsea clifensis Lam., from Telkona Range of Gorakhpur Forest Division (U.P.). The present communication describes this collection as Periconiella longispora sp. nov.

Periconiella longispora sp. nov. (Fig. 1 a, b, c)

Colonies pleurophyllae effusae, pileae, brunnea vel atrofuscse; hyphae myceliaceae semimembraceae hyalinae vel subhyalinae, septate, ramosae laeves, usque ad 4-5 μm diam.; conidiophora pleurophyllae fasciculata, recta vel subfasciculata, vallate, crustinisciata, brunnea, in stipite et capitilinum bene definitum ramis parvis forisolem divisa; stipites usque ad 800 x 3-5-8 μm septatus glaber, ramis pallide olivaceis, pleurophi 40-175 x 4-5-11.5 μm ad apices inflatus et pallidior; sporae in conidiophora secundaria et d'amia tertiarum capitatum fere convolutorum; cellulae conidiogeneae integrate, terminales, polyfasciculatae, sporae cum ramis capitis conjunctorum, simulea; cymulinae, cylindrical vel oblongae vel irregularae, ciliatae, bine evolutis donata; conidia solitary, sicca simplicia, aeropleurigena, anguste oblonga,
saepe curvata, transverse 3–20–septata, pallide olivacea vel olivacea-brunneola, laevia, plus minusve crassi- tunicata, 36–130 (75) × 4.5–9.5 (7.5) μm.

This species resembles *Periconiella rapanae* Ellis described on *Rapanae* sp., only in the shape of conidia. This resemblance, however, merits minor concern to prove the present fungus conspecific with *P. rapanae*.

The unusually large size and the number of septa in the conidia and the occasional proliferation of the branches of primary heads into secondary and tertiary stipes bearing fertile heads in the present collection warrant its description as a new species.

Authors wish to thank Dr. M. B. Ellis of Commonwealth Mycological Institute, Kew, England, for examining the specimen and extending helpful suggestions. Their thanks are also due to Dr. E. K. Cash, Binghamton, U.S.A., for Latin diagnosis.

Department of Botany, University of Gorakhpur, Gorakhpur 273 001, India, R. P. Singh.

POLLINATION BIOLOGY OF CALOTROPIS GIGANTEA (L.) R BR.

Species of *Xylocopa*, commonly known as carpenter bees have been recognised as active pollinators of *Calotropis gigantea*. Pijil recorded that *Xylocopa latipes* was an established pollinator. Recently Wannrop has pointed out that *C. gigantea* is pollinated by several insects of which *Xylocopa teniscopa* appears to be the most efficient. The present study was taken up to understand the species of *Xylocopa* that are involved in the pollination of *C. gigantea* in two distant localities. The account is based on the observations made in several populations of *C. gigantea* growing around Kukkanahally tank near Manasagangotri, Mysore and near Srinivasapur, Kolar District.

Two insect species are noted to effect pollination of *C. gigantea*, in Kukkanahally tank area; they are *Xylocopa dissimilis* Lepel. (Figs. 1 to 3) and *Xylocopa collaris* Lepel. (Fig. 4) (Hymenoptera, Apidae). Both taxa are active between 0700 to 1700 hrs on bright sunny days. Species of *X. collaris* arrived in swarms while *X. dissimilis* visited individually and on several occasions it has been noted that *X. collaris* is a major pollinating agent of *C. gigantea*, near Kukkanahally tank area, while in Srinivasapur area *Xylocopa dissimilis* alone functioned as the pollinating agent.

The bee alights on a flower in a crouching position and its wings keep fluttering so long as it stays on the flower. With regard to *X. dissimilis*, the head of the...