COMPLEXES OF Cu(II), Ni(II) AND Co(II) WITH SCHIFF BASE DERIVED FROM 2-AMINO-5-METHYLPYRIDINE AND SALICYLALDEHYDE

SMT. HEMALATHA RANGANATHAN AND D. RAMASWAMY

Central Leather Research Institute, Adyar, Madras 600 020

ABSTRACT

Complexes of Cu(II), Ni(II) and Co(II) with a Schiff base derived from 2-amino-5-methylpyridine and salicylaldehyde have been prepared and characterised. Based on elemental analysis, infrared and electronic absorption spectra, a square planar structure for Cu(II) complex and tetrahedral structures for Ni(II) and Co(II) have been proposed.

INTRODUCTION

A VARIETY of Schiff base complexes of transition metal ions have received considerable attention and some have been shown to exhibit reversible oxygenation behaviour. Since the geometrical arrangements play a significant part in their spectroscopic, magnetic, substitution and redox properties, the Schiff base derived from 2-amino-5-methylpyridine and salicylaldehyde and the geometrical arrangements of its complexes with Cu(II), Ni(II) and Co(II) have been reported in this study.

EXPERIMENTAL

The free ligand was prepared by refluxing equimolar quantities of 2-amino-methylpyridine and salicylaldehyde in ethanol for 30 min. and keeping the reaction mixture stirred at ca. 20°C for ca. 6 h. The recrystallisation from ethanol of the deep yellow crystals gave the ligand in the pure form.

The bis-salicylaldehydato complexes of the metal ions were prepared according to literature methods and 0.005 mole of the complexes was refluxed in methanol or chloroform (50 ml) for 1 h. While
hot, 0.01 mole of 2-amino-5-methylpyridine dissolved in methanol (10 ml) was added and the mixture was refluxed for a further period of 2–3 h in the case of Ni(II) and Cu(II) and 30 min. in the case of Co(II). The solid obtained was washed with cold methanol and ether recrystallised from methanol.

The Schiff base complexes of Cu(II) and Co(II) were freely soluble in methanol, chloroform and benzene whereas the Ni(II) complex was only slightly soluble. The analytical and spectroscopic data are tabulated in Table I.

Table I

Analytical and Spectral Data

<table>
<thead>
<tr>
<th>Compound</th>
<th>Colour</th>
<th>M. Pt. (°C)</th>
<th>Nitrogen Calc. (%)</th>
<th>Found (%)</th>
<th>Metal Calc. (%)</th>
<th>Found (%)</th>
<th>Electronic Bond ν
max (nm)</th>
<th>IR (stretching) bands C≡N (cm⁻¹)</th>
<th>C−O</th>
<th>M−N (cm⁻¹)</th>
<th>M−O (cm⁻¹)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ligand</td>
<td>Bright yellow</td>
<td>101</td>
<td>13.21</td>
<td>13.02</td>
<td>.</td>
<td>.</td>
<td>238, 270, 305, 348</td>
<td>1610 (s) 1280 (m)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cu(II)</td>
<td>Deep brown</td>
<td>207</td>
<td>11.53</td>
<td>11.28</td>
<td>13.47</td>
<td>12.88</td>
<td>238, 272, 306, 355, 400, 680–690</td>
<td>1620 (s) 1315 (m) 535 505 (m)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ni(II)</td>
<td>Orange > 260</td>
<td>11.64</td>
<td>11.55</td>
<td>12.21</td>
<td>11.91</td>
<td></td>
<td>238, 272, 305, 354, 390</td>
<td>1615 (s) 1315 (m) 530 490 (m)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Complex</td>
<td>Yellow</td>
<td>260</td>
<td>11.60</td>
<td>11.36</td>
<td>12.17</td>
<td>11.91</td>
<td>238, 272, 310, 356, 395</td>
<td>1601 (s) 1313 (m) 530 490 (m)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(s) = sharp, (m) = medium, b = broad.

RESULTS AND DISCUSSION

The electronic absorption spectrum of the Schiff base exhibits four absorption bands at 238 nm, 270 nm, 325 nm and 348 nm in methanol. Aryl groups are known to exhibit two absorption bands in the u.v. region; viz., 200–220 nm and 240–270 nm which are assigned to π→π* transitions and are termed as K and B bands respectively.5,6 Substituents in the benzene nucleus, however, are known to give rise to shift of K band to the benzoid B region, while B band is displaced to 270–285 nm, similar to that observed for the Schiff base reported in this study. The absorption bands at 305 nm and 348 nm are attributable to n→π* transitions arising from −OH and −C=N− in an extensively conjugated π-electron system. The band at 348 nm is also sensitive to the polarity of the solvent. Although the n→π* band in a related molecule (viz., benzylidene aniline) is reported7 to be obscured by π→π* transition, indirectly the π→π* transition in this system has been located at about 360 nm8.

The complexation of this Schiff base to Cu(II), Co(II) and Ni(II) leads to shift of 2 nm in the positions of B bands and 0–5 nm in the π→π* transition at 305 nm as shown in Table I. However, the complexation leads to a shift (7±1 nm) and intensification of the absorption peak at 348 nm suggesting the involvement of −C≡N− linkage in the co-ordination to the metal ions. Complexation leads to a highly intense absorption in the 400 nm region for the Cu(II) (ε = 12,170 M⁻¹ cm⁻¹) complex and much weaker absorptions for Ni(II) (ε = 794 M⁻¹ cm⁻¹) and Co(II) (ε = 812 M⁻¹ cm⁻¹) complexes. The Schiff base complex of Cu(II) alone exhibits a weak band (broad) at 680–690 nm indicating that the Cu(II) is in a square planar environment since truly tetrahedral complexes are reported9 to show no absorption peak between 500 and 800 nm. As contrasted to the Cu(II) complex, cobalt and nickel complexes do not exhibit any absorption peak suggesting tetrahedral environment in the latter cases.

The infrared spectra of the complexes also show that the (−C≡N−) band at 1610 cm⁻¹ in the free ligand is shifted to 1615 cm⁻¹, 1620 cm⁻¹ and 1601 cm⁻¹ for Cu(II), Ni(II) and Co(II) complexes respectively and thus providing further evidence for
-C=N- co-ordination to the metal ions. Further, the i.r. spectra of the salicylaldehydato-metal complexes differ from those of the corresponding Schiff base complexes on account of the absence of (C=O) and of the presence of (C=N-). The shift in C-O stretching frequency observed in the free ligand at 1280 cm⁻¹ to higher frequencies, viz., 1310-1315 cm⁻¹ in the complexes is indicative of the co-ordination of phenolic -OH. The infrared absorption bands observed in the region of 490-510 cm⁻¹ and 520-535 cm⁻¹ for various complexes can be attributed to the M-O and M-N stretching frequencies respectively. Thus, the electronic absorption and i.r. spectra along with elemental analysis suggest that pyridine nitrogen is not involved in the co-ordination and ideal geometries of Cu(II) (square planar), Ni(II) and Co(II) (tetrahedral) are preserved in the new Schiff base complexes at room temperature (25°C).

One of the authors (H. R.) is grateful to U.G.C. for the award of the Teacher Fellowship. We thank the Director, G.L.R.I., Dr. M. Santappa for providing the fellowship and Dr. T. Ramasami for the interest he evinced in this work.

REGIONAL SEMINARS ON DIECASTING TECHNOLOGY

Zinc Alloy Diecasting Society has pleasure in announcing three Regional Seminars on NEW AUSTRALIAN DIECASTING TECHNOLOGY, to be held at Akbar Hotel, New Delhi, on 10th June 1978; West End Hotel, Bangalore, on 13th June 1978 and Tai Mahal Hotel, Bombay, on 16th June 1978. Two Australian experts—Mr. Alan Cope, Diecasting Engineer from Australian Zinc Development Association and Mr. Alan Davis, Principal Research Scientist from Commonwealth Scientific and Industrial Research Organization—will be conducting the seminars and the topics slated for discussion are DIECASTING PROCESS, DIES DESIGN, INSTRUMENTATION, NEW FOUNDRY ALLOYS etc. The last date for registration is 25th May 1978. For further details and registration, please contact ZINC ALLOY DIECASTING SOCIETY, B-6/7 Shopping Centre, Safdarjung Enclave, New Delhi 110 016.