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ABSTRACT

Renormalization-Group theoretic approach to disorder induced electron localization is
reconsidered. It is suggested that there is a naturally occurting lower wavevector cut-off in the

problern such that one should eliminate the long-wavelength degreed of freedom in favour of
the shorter ones, contrary to the usual procedure. One, indeed, obtains in this way a physical

hxed point in that u* >0,

INTRODUCTION

HE suggestionl™s that, in a certain sense, the
disorder induced transition® from the deloca-
lized to the localized electron states can bz viewed

as a phase transition for an n-component classjcal
field system in the limit 2 — 0, is now known

to be erroneous+7-8, To be specific, consider the
random lattice electronic Hamiltoniané ;
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where the site-diagonal disorder is realized by
regarding fe,} to be a set of identically inde-
pendently distributed random gaussian variables
having a common variance . Here V, sets tne

scale of energy. It has been shown that the con-
figurationally averaged electron propagator

(G}; (E, Z’ )}mﬂig‘ i1s then given as
{ G%x (E, £) )uontiy.
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where  the  statistical mechanical  correlation
function G",,, (e, o) is derived from the equivalent
albeit complex, Hamiltonian (dimensionless)
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e = ElV,, o = 2V, =4/ =1, (3)

The above cquivalence can, of course, be gencralized
to arbitrary disorder?. It has been tempting,‘ﬂwrcfcrc,
o interpret the divergence of the correlation
lepgth at the critical point of the equivalent
tatistical mcchanical problem as the divergence of
the localization length at the mobility edpel®, One
could, thus, hope to make the powerful formalism
of the renormalization group (RG) to bear on 1be
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localization problem, It turned out, however, that
the implicit assumption that there is a physijcal
fixed point attracting the effective Hamiltonian in
Eq. (3) is mistaken in that u* (coefficient
of the quartic term in the fixed-point Hamiltonjan) |
comes out negative, It was concluded that some-
thing mmuch more subtle happens at the
mobility edgeT,

In the following we reconsider the RG-theorecic
approach to the Anderson problem vig the
equivalence discussed above, We, however, take
cognizance of the fact there is a natural lower
wavevector cut-off in the problem necessitating a
modification of the RG procedure in that we should
now eliminate the low-wavevector degrees of
freedom in favour of the higher ones. Interestingly
enough, this vyields a physical fixed point 1a
that «* > 0,

To bring out the essentials of the approach into
sharp focus, we shall consider an electron moving
in a d-dimensional continyum rather than on a
lattice,  The Gaussian white noise is ROw:
described by the potential- e (x). The continuum
limit is formally equivalent to sethng.
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where m is electronic mass and §4(x) the d-dimen-
sional Dirac deliafunction,

Noting that ', has the dimensiopubty energy
squared times volume, one can construct a charac
teristic Yength 1, from fi=/m and @y for d .5 410,
Expressing all lengths in thc units of I, and all
energies  in terms  of J2imiy?,  the cquivalent
Mumiltonian may now be written as  (in the
reciprocal space)
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where While the physics associated with this fixed

fqﬁ(lfr}‘d fafg for O« g < oo,
and R and U are the dimensicnless coefficients

analogous to e and ¢2 of Eq. (3). Let it bz
noted that ¢ is the dimensionless wavevecior
measured in the wnits of 1/4.

Now the physical significance of the length
I, is simply this, For 2 < d < 4, it can be
shown!® that, for weak scattering, the mean-iree
path for the electron scattered by the random
potential is smaller than its ds Broghe wavelength
for low encrgies while reverss is the case for the
higher electron encrgies., The characteristic wave-
lepgth at which the transiion takes place is just
the length [, Thus implics that the degrees .ﬂf
freedom corresponding to higher spatial frequencies
are relatively undamped while those with Ilower
spatial frequencies behave like the diffusive mﬁdelg.
This is just the opposite of the wsual hydrodynamic
picture of Giozburg-Landau-W.lscn, This naturally
suggesis a coarse-graining in the reciprocal spacs
where §, is assumid to have been avm:aged over
reciprocal space cells of linear dimension ~ L.
This sets a lowsr wavevedlor cut-0F and motivates
us to study the effective Hamiltonian
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a la renormalization group. One proceeds exac‘tly
as in the usual casell except that now one splils
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Sa,g = Sag for b< q< m end ze o0 otheiwise
Sa,q = Sag for 1<<g<oo .
with >1,

and vperforms the partial trace over the low-
spatial-frequency degrees of freedom S .. One
must only remember that now the unperiurbed
propagator 18

i3 (g, + 4.)

Yty
The approximate recursionrelations for n - Q are

now

Feay = 072 (g — 2up)

gy 4 = b€ (g + 8uy")

with € =4 — d, (7}
Now recalling that b > 1, onc readily sees that
for d & 4, Eq. (7) yields a positive u*. This
is the main result obtained by us.

point is not very clear yet, the following points are
evident. There is no divergince of the correlation
(localization) length at the fixed point. This
would imply finite localization length even at the
mobiljty edge. Physically this is quite wunder-
standable sipce the Ilgcalization length canpot
meaningfully exceed the mean free path that
remains finite even for the ‘extended’ states just
above the rmobility edge. Mathematically 1tbis
would imply analylicity of the averaged propagator
at the mobility edge and in particular no kink ia
the density of states. This also provides an
explicit answer to the general criticism of the RG
approach to the localization problem based on the
equvalence (2), namely, that it is predicated on the
averaged propagator and hence inadequate 1o treat
localization. The point {s that the equjivalence
(2) is made use of only to the extent that it
helps us find an appropriate free energy functiona.b,
The latter contains muth more information than
the averaged propagator, and there is no a priois

reason why it should not bear on the localization
problem.

Finally, we would like to point out that the
present inverse procedure of renormalization i3
very reminescent of the situation encountersd in
the theory of turbulence where also the universal
features lie in the direction of the small scale cddies
and, accordingly, oune eliminates the smaller
spatial frequency components in favour of the
higher onesl2,
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