viz., digestive gland, mantle and foot were isolated in cold and a 2% homogenate of each tissue was prepared in 0.25 M sucrose. The homogenate was centrifuged at 3000 rpm for 10 min to remove the cell debris and 0.5 ml of this was used for the enzyme assay.

Alkaline phosphatase (orthophosphoric monoester phosphohosphatase EC 3.1.3.1) was estimated by the method of Bodansky\(^9\) and the liberated phosphate was estimated by the method of Fiske and Subbarow\(^10\).

The results show that the activity of alkaline phosphatase in the three tissues of the active snail was in the order digestive gland > mantle > foot. The predominance of the enzyme activity in the digestive gland shows the active role played by the enzyme in cleaving most of the orthophosphoric monoesters like glycerophosphate, phenyl phosphate, etc.\(^5\), in the tissue. The high level of enzyme activity in the mantle might be attributed to the active role played by the mantle tissue in calcification-decalcification\(^9\)-\(^11\) process. Since foot muscle is involved in neither of these functions, the enzyme might be present in relatively low quantity in this tissue.

In the aestival snail, alkaline phosphatase decreased by 63% in digestive gland showing a substantial reduction in the enzyme activity. The snail would be in a state of suspended animation during aestivation wherein the locomotor, reproductive and digestive functions cease to operate. Consequently, the energy demands are minimised and a decrease in many enzymes of Krebs cycle\(^12\)-\(^13\), transaminases\(^14\), etc., were reported resulting in the decreased production of orthophosphoric monoesters, which are the substrates for alkaline phosphatase. There was nearly 12% increase in alkaline phosphatase activity (which was statistically insignificant) in the mantle tissue of aestival snail. The total retention of activity in the mantle tissue of aestival snail might aid decalcification process reported in the snail. The increase of alkaline phosphatase in the foot muscle of aestival snail was 25% which was significant statistically. Foot muscle is involved in maintaining the muscle tone to keep the operculum tight to the shell\(^13\) during aestivation. Ca\(^{++}\) has a significant role in muscle contraction\(^15\) and the increased alkaline phosphatase activity might be helpful in mobilisation of Ca\(^{++}\) resources. Increased calcium content reported in the foot muscle\(^14\) of aestival Pila globosa supports the above contention. The concentrations as well as the amounts of calcium required for activation of the enzyme in the rabbit are quite similar to those in molluscs suggesting the same mode of regulation in both animals\(^16\).

The post-doctoral fellowship awarded to one of us (YSR) by CSIR is gratefully acknowledged.

Department of Zoology, S.V. University, Tirupati, September 9, 1977.

Y. SRINIVASA REDDY, S. SUBBA REDDY, K. S. SWAMI

Table I

Alkaline phosphatase activity in the tissues of active and aestival Pila globosa

<table>
<thead>
<tr>
<th>Digestive gland</th>
<th>Mantle</th>
<th>Foot</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Active</td>
<td>Aest.</td>
</tr>
<tr>
<td>Mean</td>
<td>14-99</td>
<td>5-18</td>
</tr>
<tr>
<td>S.D.</td>
<td>± 3-3</td>
<td>± 1-6</td>
</tr>
<tr>
<td>% difference</td>
<td>-65-37</td>
<td>N.S.</td>
</tr>
<tr>
<td>Student 't'</td>
<td>P < 0-001</td>
<td></td>
</tr>
</tbody>
</table>

Note: N.S. — not significant at 5% level.
