6. Rennerfelt, E., Medd. Fran Stat. Skogsfor-
skingsinstitut, 1947, 36 (9), 1.
7. Rudman, P., Plate IX, Holzforschung, 1962,
 16 (56), 74.
8. —, Plate XI, ibid., 1963, 17 (21), 54.
9. —, Plate XVIII, ibid., 1965, 19 (52), 57.
10. — and Da Costa E. W. B., Plate II, Forest
 Technological Paper, 1958, No. 1, C.S.I.R.O.,
 Melbourne.
12. Savory, J. G., Timber Papers, Princes Risborough
 Laboratory, 1972, No. 50, 1.
13. Scheffer, T. C. and Cowling E. W., Annual
14. Subrahmanyan, K., Midhusudhanare, J. and
 Jagannadharae, K. V., Curr. Sci., 1976, 45 (8),
 293.
 State College of Forestry, Syracuse University,
 New York, 1948.

ABNORMAL ISOLATES OF SEED-BORNE
COLLETOTRICHIUM TRUNCATUM (SCHW.)
ANDRUS AND MOORE FROM INDIA

DURING a study of seed-borne infections of Phaseolus
aureus Roxb. (Mung bean) and P. mungo L. (Urid
bean) from the seed samples of Haryana and Uttar
Pradesh a few abnormal isolates of C. truncatum were
isolated.

About 400 seeds of each sample were incubated on
blotters and 2% P.D.A. at 20°C (± 1°C) under 12 hours
alternating cycles of NUV light and darkness as recom-

mended by International Rules of Seed Testing.
After seven days of incubation the acervuli of the
fungus were visible on the seeds as blackish irregular
areas with 6-10 dark brown fulliform setae. Minute,
 dull white, to almost white, conidial masses appeared
intermingled between the acervuli. The conidia of the
fungi were hyaline, falcate to lanceolate in shape.
The mycelium was well developed forming sclerotial
aggregates abundantly. The acervuli showed a
tendency to coalesce sometimes covering the entire
surface of the seeds.

On P.D.A. the colonies were dark brown to black
colour with septate branched mycelium. The
individual acervuli were hemispherical to truncate
conical, measuring 150 μ x 250 μ. The setae were
long, 1-3 septate dark brown to almost black about
60-300 μ long and 3-5 to 8 μ wide. Immature acer-

vuL were greyish white to dull orange in colour while
matured acervuli were dark brown to black. The
conidia were hyaline, falcate to lanceolate measuring
16-20 μ in length and 3-0-3-5 μ in width.

The gross morphology of the isolates was close to
that of Colletotrichum truncatum (Schw.); however, in compari-
on to that species, the isolates were slow to sporulate, their conidia were at the lower
end of the size range (16-20 μ in length × 3-0-3-5 μ
in width; normal range 17-32 μ in length × 3-5-4-0 μ in
width and the mycelium showed a greater
tendency towards the formation of sclerotial aggre-
gates. The cultures are deposited at Commonwealth
Myological Institute, Kew, England.

The authors are thankful to Dr. M. N. Gupta, Head
of the Botany Department, Agra College, Agra, for
providing laboratory facilities and to Dr. A. Johnston,
Director, C.M.I., Kew, England, for confirming the
identity of the isolates.

Botany Department,
Agra College, Agra (U.P.)

Professor Emeritus of Botany,
Kumaon University,
Nainital (U.P.)
March 2, 1977.

1. Anonymous, "International rules for seed testing,"
2. Arx, J.A. V., "Die Artender Gattung Colletotrichum
 Cda.," Phytopath. Z., 1957, 29, 413.

OCURRENCE OF THREE NEW ROT DISEASES
OF STORED GARLIC (ALLIUM SATIVUM L.)

A few rotten bulbs were observed in garlic from the
market. The diseased garlic bulbs were yellowish-
brown in colour, and light in weight as compared to
the healthy bulbs. For isolation of causal organ-
isms, the small bits of surface sterilized discolored
bulbs were plated on Czapek’s Dox agar media and
incubated at 28°C (± 2°C) for one week. The fungi
were purified following Ricker and Ricker and
the pathogenicity was tested by the knife injury
method of Tandon and Mishra. Superficial cuts were
made with sterilized scalpel on surface sterilized healthy
bulbs and then sprayed with spore suspension of
the respective fungi. Uninjured healthy bulbs were also
dipped in spore suspension for a few minutes and
then incubated at 28°C (± 2°C). The pathogens
were reisolated from these diseased tissues of inocu-
lated bulbs and compared with the test organism.
Corresponding controls were also maintained.

Three fungal species, viz., Cephalosporium curtipes
Saccardo, Fusarium oxysporum Wollen Weber and
Reinking and Penicillium paxilli Bainier produced
rots on healthy garlic bulbs through injury. It appears
that these fungi are ‘wound’ pathogens.

All the three fungi produced dry rots which were
preceded by maceration of affected tissue, shrinkage
and ultimate death. *Fusarium camptoceras* caused brown rot, formation of deep fissures coupled with intensive maceration and drying of the affected tissue. The internal portion of the bulb turned completely brown with spurt of mycelial growth and the whole bulb was destroyed 12 days after inoculation. No sprouting was recorded.

Cephalosporium curtipes induced pinkish rot and two-thirds of the bulb deteriorated almost completely in 12 days time. Shrinking of the tissue and severe maceration was evident both superficially and deeply. A little bit of sprouting was noticed which soon collapsed.

Penicillium paxilli caused darker yellowish dry rot with shallow fissures. The affected portion was soon covered with green mass. The advancement of the rot was extremely slow in terms of radial and vertical growth of mycelia but maceration and shrinking of tissue was evident in those areas also where no fungus mycelium could be traced indicating thereby that some toxic substance with faster diffusion capacity is involved in its pathogenesis. In twelve days time, only one-third of the bulb showed fungal growth, whereas half of the bulb was visibly affected by some diffusible toxic substance. The inoculated bulbs still exhibited considerable germination capacity but the germinating finally collapsed and never reached maturity.

In terms of overall severity, *Fusarium camptoceras* was most actively involved whereas *Cephalosporium curtipes* was moderately pathogenic and *Penicillium paxilli* was least pathogenic.

Quite a good number of fungi, viz., *Alieneria*, *Aspergillus* sp., *Cercospora* sp., *Colletotrichum* sp., *Fusarium oxysporum* f. *cepea*, *Phyloplitisca* sp., *Rhizopus* sp., *Pithomyces* sp., *Sclerotium* sp. and *Stemphyllium* sp. have been reported to cause diseases on *Allium* spp. Recently Rangnathan *et al.* have studied the varietal reaction of garlic to a new root rot caused by *Macrophonima phaseoli* (M. phaseolina) but so far none of the present three fungi have been reported to cause any sort of disease on garlic (*Allium sativum*). However, a white rot disease of stored garlic caused by *Sclerotium* sp. had earlier been reported from Kanpur.

The authors are thankful to Dr. M. N. G. pta., Professor and Head, Department of Botany, Agra College, Agra, for his interest in the present investigations.

Plant Pathology Research Lab.,
Department of Botany,
Agra College, Agra 282 002,
India, August 7, 1977.

A. N. ROY.
R. B. SHARMA.
KAMLASH C. GUPTA.

OCCURRENCE OF CYLINDROCLADIUM SCOPARIUM MORGAN ON LUCERNE IN INDIA

During disease survey of campus flora, the authors observed the occurrence of leaf-spot and stalk blight of lucerne (*Medicago sativa* Linn.), an important poultry feed grown in the dairy farm of the University of Agricultural Sciences, Bangalore, in December 1975. Though the damage done to the plant was very little, the infection of the host became obvious with prolonged wet weather. Microscopic examination of the diseased leaflets and stalks revealed the presence of abundant cylindrical, hyaline, 2–4 septate conidia and septate conidiophores characteristic of a hyphomycetous fungus.

In nature, the disease starts on leaflets as small, circular and brown, amphigenous spots measuring up to 3 mm in diameter. On stem, the lesions were noticed at the soil level, soon enlarge, coalesce and turn necrotic. The infection appears to originate from the soil and proceeds upwards involving the stalks and leaflets.

Reported isolations on potato-dextrose-agar medium from the diseased leaflets and dead stems invariably yielded a pure culture of a species of *Cylindrocladium*. The mycelium was septate, hyaline, cottony white at first, becoming brown with age. Older hyphae formed chlamydospores which were brown, intercalary or terminal, single or in chains, sometimes in compact sori-like structure. Conidiophores were mononematous, hyaline, branching at the apex to give a pseudopodium appendage, erect or flexuous, cylindrical at the tip prolonging to form a sterile appendage with swollen ends.

Conidia were hyaline, smooth, cylindrical, aggregated in slimy clusters, 2–4 septate and glutine. Based on these characteristics the organism was identified as *Cylindrocladium scoparium* Morgan.

No perithecia were observed even though it was grown on five synthetic media: (1) malt agar; (2) Murtin's Rose-bengal agar; (3) mes agar; (4) Porter Pimentel medium and (5) Thornon's agar) and on steam.