In general, the plants supplied with high potash tend to increase permeability of the protoplasmic membrane (Stockinga, 1956). In leaves supplied with potassium, phenolic compounds may accumulate around the diseased spots and thereby arrest the multiplication and migration of the bacterium, to control the severity of the disease.

Agricultural College and Research Institute, Madurai 625 104, July 18, 1977.

R. M. OHAN, N. MOHAMED MUSTAQ AHMED, SABITHA DORAI SWAMY, V. THENAMMAI.

\textbf{PLEUROTUS EOUS (BERK) SACC.: A NEW CULTIVATED MUSHROOM}

During the survey of edible mushrooms around Mysore, an attractive pink coloured mushroom, similar to \textit{P. flabellatus} (white coloured), was collected during October 1975 from the dead portion of a living tree (\textit{Ficus bengalensis}). The identification was confirmed by Dr. D. N. Peglar of Royal Botanic Gardens, Kiew, as \textit{Pleurotus eous} which was earlier reported in 1848 from hot valleys of Sikkim, Indiaa.

The cultivation of \textit{P. eous} (Fig. 1, A–C) was successfully carried out on water soaked chopped paddy straw in circular plastic basins (32 cm dia \times 13 cm) shallow and deep rectangular wooden trays (60 \times 90 \times 17–5 cm) at room temperature (21–35° C) and R.H. 65–90%. About 100 g, spawn on paddy straw, 25–30 g of coarsely ground horse gram and 3 kg of pre-soaked paddy straw were mixed and filled into containers to raise the mushroom crop. During the cultivation, it was observed that the deep wooden trays required less watering and provided 1.6–1.8 times more yield compared to the circular basins and shallow wooden trays. The number of pinheads formed in shallow containers were often more compared to the deep trays but the yield recorded from the latter was much higher. This may be attributed to the fact that lower number of pinheads grew to their maximum size. The substitution of oilseed cakes (groundnut/sesame) at different levels, while spawning, did not improve the mushroom growth.

\textbf{Fig. 1. Pleurotus eous} growing in circular plastic basins (A), rectangular shallow (B) and deep (C) wooden trays.
Proper ventilation was found necessary for cultivation. The colour of P. eous was distinctly pink when young but faded slightly with growth. The colour of mushroom was darker when grown at lower temperatures (22–28°C).

Proximate composition and nutritive constituents of P. eous was found to be similar to that of other species of Pleurotus1–8. The protein content was 33–24% on dry weight basis. The free amino acids were extracted in cold, with 80% ethyl alcohol, purified by passing through Dowex-50 column and separated by high voltage electrophoresis at pH 8.9 at 3 KV 100 ma for one hour. The mushroom contained thirteen free amino acids, viz., serine, glutamic acid, alanine, glycine, lysine, aspartic acid, arginine, tyrosine, methionine, valine, phenylalanine, isoleucine and leucine. In addition to the above the presence of cystine and threonine was shown by faint spots. The free amino acids reported in Pleurotus sp. were similar except tyrosine and valine which were not detected.

Sensory evaluation of the recipes (saute) prepared from both the species showed that P. eous tastes softer and has stronger aroma compared to P. flabellatus. A freeze dried product of pink mushroom was more attractive.

The authors record their grateful thanks to Dr. D. N. Peglar, Kiew, for identification of the collected mushroom. Authors are indebted to Dr. M. V. Patwardhan and Dr. B. L. Amla, Director, Central Food Technological Research Institute, for their kind encouragement.

Fruit and Vegetable Technology, N. S. SINGH.
Discipline, S. RAJARATHNAM.
Central Food Technological Research Institute, Mysore 570 013, India, May 20, 1977.

* Personal communication.

CULURA DUM. (HEPATICAE)—A GENUS NEW TO INDIAN FLORA

Eastern Himalayas are known to harbour many interesting genera of phylogenetic significance, viz., Calobryum Nees, Haplotium Nees, Takakiya Hattori and Inoue, etc. The present note adds another rare genus Culura Dum. of the family Lejeuneaceae. The occurrence of this genus in Indian Flora as C. ornata Goebel (cf. Chopra1, Parihar2, Kachroo3) is erroneous. In fact C. ornata is distributed in Malay Pen., Java, Borneo, and Philippines only.

Leaves with variously shaped saes, amphigastria doubled, are the chief distinguishing characters of the taxon. In Culura the leaf structure is very complicated. The lobule is inrolled against the lobe and becomes concrescent with it, thus forming a canal leading into a sac. The sac is provided with a valvular closing apparatus, like that of Utricularia, allowing the water to run in, but preventing it from escaping.

Distribution

Jovet-Ast4, in the monograph of the genus, listed 51 species and remarked that the genus Culura may be regarded as pantropical-temperate-subantarctic in distribution. Its altitudinal distribution is also of interest. It ranges from plains to height of ca 1,500 m. The present report of the genus from Darjeeling Himalayas (Tiger Hill, ca 2573 m) now adds further to its known range of distribution.

The specimens worked out in the present study revealed two different taxa, of which one is C. tenuicornis (Evans) Steph. while the other is C. calyptrifolia (Hook.) Dum.

Specimens examined

Tiger Hill (ca 2573 m) Darjeeling, Eastern Himalayas, Lal and Ghosh, 205, 207; 235. 13–11–76 (in CAL), epiphyllous, on upper surface of dicot leaves.

Cryptogramic Unit, Jagdish Lal.
