Variation of $\log (f_r/T)$ with 1/T is shown in Fig. 1 for pure ethyl salicylate. The observed

FIG. 1. Plot of $Log_{10}(f_r/T)$ vs. T^{-1} for ethyl salicylate.

linear variation with negative slope is consistent with the theory proposed by Davies and Lamb⁵ for rotational isomerism. Estimated value of activation energy of the rate determining mechanism is 5 K.cals/mole.

From Tables II and III it is apparant that the relaxation frequency f, of ethyl salicylate is not significantly altered by the foreign environment of either m-xylene or nitrobenzene. Polar and non-polar solvents have no influence on the relaxation, except for providing a dilution effect on relaxation strength. It can therefore be concluded that the mechanism of relaxation in ethyl salicylate is of an intramolecular origin.

ACKNOWLEDGEMENT

One of the authors (JSM) wishes to record his thanks to C.S.I.R., New Delhi, for the award of a research fellowship.

- 1. Hall, D. N. and Lamb, J., Trans. Faraday Society, 1959, 55, 784.
- 2. Subrahmanyam, S. V. and Piercy, J. E., J. Acoust. Soc. Am. 1965, 37, 340.
- 3. —, and —, J. Chem. Phys., 1965, 42, 1475.
- 4. Sree Ramamurthy, J. and Ramachandra Rao, B., J. Acoust. Soc. India, 1973, 1, 170.
- 5. Davies, R. O. and Lamb, J., Proc. Phys. Soc. London, 1959. 73 B, 767.

SYNTHESIS OF 3"-METHYL-FURO-(5", 4":7, 8)-FLAVONES

G. L. DAVID KRUPADANAM, G. SRIMANNARAYANA and (Late) N. V. SUBBA RAO Department of Chemistry, Osmania University, Hyderabad 500 007

psoralene, angelecin and xanthotoxin are reported to possess fish-toxic and photodynamic properties¹⁻³. Several methyl substituted furo-coumarins and furoflavones are also reported to possess similar physiological properties⁴⁻⁶. 3', 4, 8-Trimethylpsoralene, available in large quantities by synthesis, is the most effective photodynamic agent⁷. 3"-Methyl-furo-(5", 4":7, 8)-flavones, considered to be analogous of karanjin, do not seem to have been synthesized earlier. In this communication we report their synthesis, spectral characteristics and fish-toxicity.

7-Hydroxy- $(Ia)^8$, 7-hydroxy-3-methyl- $(Ib)^9$, 7-hydroxy-3-methyl-3', 4'-dimethoxyl $(Ic)^9$ and 7-hydroxy-3-phenyl $(Id)^{10}$ -flavone were condensed with chloroacetone by heating in acetone-potassium carbonate medium to give the corresponding 7-acetonoloxyflavones (IIa-d). Their melting points, ir and uv data are given in Table I and the nmr data are given in Table II. The cyclodehydration of acetonoloxybenzenes with polyphosphoric acid, leading to the formation of 3-methylbenzofurans,

was reported earlier¹¹. The 7-acetonoloxyflavones (II a-d) were heated in polyphosphoric acid for 2 hours at 110-120°. In each case a pale yellow semi-solid was obtained. The semi-solids were subjected to chromatography, resulting in the isolation of (1) cyclized product $\sim 30\%$, (2) unconverted starting compound $\sim 50\%$, and (3) the corresponding 7-hydroxyflavones ~20% in each case. The melting points, ir and uv data of the cyclized products III a-d are given in Table I and their nmr data are given in Table II. The data suggest that the cyclized products possess 3-methylfuro-(5", 4": 7, 8)-flavone structure (III a-d). In the ir spectra of furoflavones the frequency appearing around 1630 cm⁻¹ is due to the flavone carbonyl group. The carbonyl frequency found around 1725 cm⁻¹ in 7-acetonoloxyflavones (II a-d) due to acetonoloxy carbonyl disappears in the furoflavones. In their nmr spectra, a doublet appears in the region $2.45-2.65 \delta$ (J = 1 Hz) assignable to the C3"-methyl group and the splitting is due to the adjacent C2" proton. An AB doublet appears in the region $8.20-8.24 \delta$ (J = 9-10 Hz), characteristic

TABLE I Mp, ir, uv and fish-toxicity data of 7-acetonoloxyflavones and the corresponding 3"-methyl-furo-(5", 4": 7, 8)-flavones*

mn °C				Fish-toxicity at 20 ppm turning time Mts. Sec.	
mp °C	Acetonol- oxy carbonyl	Flavone carbo- nyl	uv MeOH nm (Log ε) max.		
179	1730	1630	222 $(4 \cdot 04)$, 252 $(4 \cdot 04)$ and 306 $(4 \cdot 17)$	10-00	
132	1725	1625	236 (4·25) and 300 (4·26)	4-30	
95	1730	1620	224 (4·31) and 308 (4·31)	1200	
170	1725	1630	232 (4·38), 258 (4·23) and 306 (4·25)	35–00	
130	• •	1635	224 (4·30), 256 (4·32), 264 (4·33) and 300 (4·10)	Not toxic within 45 miutes	
190	• •	1630	222 $(4 \cdot 28)$, 254 $(4 \cdot 38)$ and 310 $(3 \cdot 99)$	do.	
184		1630	222 (4·36), 244 (4·45), 248 (4·45) and 316 (4·23)	do.	
215		1630	224 (4·56), 250 (4·57), 258 (4·57) and 308 (4·15)	do.	
	132 95 170 130 190	179 1730 132 1725 95 1730 170 1725 130 190	carbonyl nyl 179 1730 1630 132 1725 1625 95 1730 1620 170 1725 1630 130 1635 190 1630 184 1630	179 1730 1630 222 (4·04), 252 (4·04) and 306 (4·17) 132 1725 1625 236 (4·25) and 300 (4·26) 95 1730 1620 224 (4·31) and 308 (4·31) 170 1725 1630 232 (4·38), 258 (4·23) and 306 (4·25) 130 1635 224 (4·30), 256 (4·32), 264 (4·33) and 300 (4·10) 190 1630 222 (4·28), 254 (4·38) and 310 (3·99) 184 1630 222 (4·36), 244 (4·45), 248 (4·45) and 316 (4·23) 215 1630 224 (4·56), 250 (4·57),	

^{*} Satisfactory elemental analyses were obtained for all the compounds. ** Solvent of crystallization: Benzene-Petroleum ether (60-80°).

TABLE II Nmr spectral data of 7-acetonoloxy-, and 3"-methyl-furo-(5", 4": 7, 8)-flavones Solvent (CDCl₃) 60 MHz, δ values, (J in Hz)

Compound	C3" (d)	-O-CH ₂ -	- CO- CH ₃	C3 substituent (H or CH ₃ or Ph)	C5	C2", C2 phenyl, C6 and C8 (m)	Methoxyis (s)
II a	••	4.70	2-18	6·85 s (H)	(J=9)	7·00-7·50 (7H)	• •
11 <i>b</i>	• •	4.70	2.10	2·30 s (CH ₃)	(J = 10)	6·75-7·70 (7H)	• •
II c	• •	4.62	2·12	2·28 s (CH ₃)	$\begin{array}{c} 8 \cdot 15 \\ (J = 9) \end{array}$	6·70-7·40 (5H)	3·9 (6H)
II d		4.72	2.30	6·90-7·40* m (C ₆ H ₅)	(J=10)	6·90-7·40* (12H)	• •
III a	(3 = 1)	• •	• •	6·90 s (H)	$ 8 \cdot 20 $ $ (3 = 9) $	7·30-7·75 (7H)	••
III b	$(\mathbf{J}=1)$		* *	2·24 s (CH _s)	$\begin{array}{c} 8 \cdot 24 \\ (J = 9 \cdot 5) \end{array}$	7·30-7·90 (7H)	• •
III c	$\begin{array}{c} 2 \cdot 55 \\ (\mathbf{J} = 1) \end{array}$	• •	• •	2·35 s (CH ₃)	$\begin{array}{c} 8 \cdot 23 \\ (J = 9) \end{array}$	7·00-7·63 (511)	4·05 (6J1)
$\mathbf{H}\mathbf{I}d$	$\begin{array}{c} 2 \cdot 52 \\ (J = 1) \end{array}$	• •	• •	7·18-7·60* m (Calls)	$ 8 \cdot 20 $ $ (J = 10)$	7·18-7·60* (1211)	3 3

^{*} C3 Phenyl protons merged with other aromatic protons,

[†] Solvent of crystallization: Benzene.

of C5 proton of flavone-12, indicating that there is a proton at C6 position. The C2" and C6 protons merge with the other aromatic protons of side phenyl nuclei. From this it can be inferred that the mode of cyclization is 7:8 positions of flavone skeleton rather than 6:7 positions. This is in agreement with the earlier observation that electrophilic substitution reactions in 7-hydroxyflavones occur exclusively at position-813. In the mass spectra, the molecular ion peak is quite abundant in all the furoflavones III a-d. The base peak is due to M-1ion (IV a-d) formed as a result of the facile loss of a hydrogen from the C3"-methyl group followed by a rearrangement to give a stable ring expanded chromenyl ion¹⁴. A less intense M-CO ion (V a-d) and intense ions due to retro-Diels-Alder fission (VI a-d and VII a-d) are also noticed¹⁵.

2. Krishna wamy, B. and Seshadri, T. R., Proc. Indian Acad. Sci., 1942, 16 A, 231.

3. Spath, E. and Kuffner, F., Monatsh., 1936, 69, 75.

4. Fowlks, W. L., Griffith, D. G. and Oginsky, E. L., *Nature*, 1958, 181, 571.

5. Pathak, M. A., Fellman, J. B. and Kaufman, K. D., J. Invest. Dermatol., 1960, 35, 165.

6. Chibber, S. S. Ganguli, A. K., Mukerjee, S. K. and Seshadri, T. R., Proc. Indian Acad. Sci., 1957, 46 A, 19.

7. Kaufman, K. D. and Worden, L. R., J. Org. Chem., 1961, 26, 4721.

8. Jain, A. C., Mathur, S. K. and Seshadri, T. R., J. Sci. Industr. Res., 1962, 21 B, 214.

9. Srimannarayana, G. and Subba Rao, N. V., Indian J. Chem., 1968, 6, 696.

10. Gupta, V. N. and Seshadri, T. R., J. Sci. Industr. Res., 1957, 16 B, 116.

11. Weinheimer, A. J. and Washecheck, P. H., Tetrahedron Lett., 1969, p. 3315.

HO Ar CICH₂COCH₃ (
$$\overline{1}$$
a-d) ($\overline{1}$ b) 290(64%) ($\overline{1}$ c) 352(72%) ($\overline{1}$ d) 350(34%)

$$(Va-d) \qquad (Va-d) \qquad ($$

7-Acetonoloxyslavones II a-d at 20 ppm are fairly toxic to fish species Barbus ticto (Table I) when tested adopting the procedure of Krishnaswamy and Seshadri². At the same concentration the furo-flavones III a-d did not show any toxicity within 45 minutes. Screening of these compounds for photodynamic activity is in progress.

1. Seshadri, T. R. and Sood, M. S., Curr. Sci., 1963, 32, 195.

7-Acetonoloxystavones II a-d at 20 ppm are fairly 12. Mabry, T., Markham, K. and Thomas, M., xic to fish species Barbus ticto (Table I) when Springer-Verlag, Berlin, 1970, p. 274.

13. Dean, F. M., The Total Synthesis of Natural Products, Vol. I (Ed. J. ApSimon) Wiley-Interscience, New York, 1973, p. 508.

14. Willhalm, B., Thomas, A. F. and Gautschi, F., Tetrahedron, 1964, 20, 1185.

15. Porter, Q. N. and Baldas, J., Mass Spectrometry of Heterocyclic Compounds, Wiley-Interscience, New York, 1971, p. 171.